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ABSTRACT

The thermal reliability of GaN-based power devices is
heavily influenced by the structural integrity of the die attach
layer, particularly under prolonged high-temperature storage
(HTS) conditions. The study investigates the microstructural
evolution of hybrid sintered silver Ag die attach material and
its impact on thermal resistivity (R,) through machine
learning and Al-based image analysis. Scanning Electron
Microscopy (SEM) cross-sections were processed using
Trainable Weka Segmentation (TWS), a machine learning
tool for pixel-level classification. Fractal descriptors —
lacunarity (A) and succolarity (S,)—were computed to
quantify spatial heterogeneity and network connectivity of
the sintered Ag microstructure obtained from macro program
based on TWS and computational framework. Results
revealed that thermal ageing leads to increased A and
decreased S, indicative of grain coarsening and reduced
interconnectivity. Such changes were strongly correlated
with shifts in Ry, with regression models yielding R? values
of 0.892 (), 0.961 (S,), and 0.938 (combined). The study
presents a novel Al-assisted image analysis framework
designed to investigate and characterize microstructural
evolution using fractal parameters as numerical descriptors,
providing a quantitative basis for assessing the thermal
reliability of sintered silver die attach materials.

1. 0 INTRODUCTION

The long-term reliability of GaN-based power devices is
primarily governed by the structural and thermal stability of
the die attach interface, with die attach degradation emerging
as a dominant failure mechanism under prolonged thermal
ageing. Elevated temperatures induce a significant increase in
thermal boundary resistance (TBR) at the die attach interface
thereby impeding effective heat dissipation and diminishing
overall thermal management efficiency. Such degradation
has been closely associated with the microstructural
evolution of the Ag sinter which is a commonly utilized die
attach material in RF power industry. Findings from HTS
tests conducted at 200 °C have consistently demonstrated a

progressive rise in TBR over time based on previous
evaluation conducted. Microstructural analysis via cross-
sectional imaging of aged samples revealed notable
morphological transformations within the Ag sinter layer,
including pore coalescence, grain growth, and structural
disintegration—all of which contribute to increased thermal
resistance and premature failure of the thermal pathway.
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Fig. 1. Percent Shift in Thermal Resistance (Ry,) of the ACC After 200,
500, and 1000 Hours of High Temperature Storage (HTS).

The kinetics of such microstructural transformations are
highly temperature-dependent. At elevated ageing
temperatures, diffusion of Ag particles triggers grain
coarsening, void formation, and the expansion of resin-rich
zones, deteriorating the sintered network's thermal
conductivity. Conversely, lower ageing temperatures result in
a slower densification and limited coarsening, thereby
moderating the rate of TBR escalation. The thermally
activated behavior points to a critical need for investigating
the fundamental mechanisms governing sintered Ag
degradation and their implications on device-level R;p,.

Despite the increasing adoption of hybrid Ag sinter materials
in RF and high-power electronic applications, there is no
existing comprehensive study or literature that quantitatively
correlates microstructural evolution with thermal resistivity
(R¢n)- To address the gap, the present work utilizes advanced
post-processed image analysis and artificial intelligence (Al)-
assisted segmentation techniques to extract fractal-based
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descriptors—such as lacunarity (A) and succolarity (S,)—
from scanning electron microscopy (SEM) images. These
fractal parameters serve as quantitative indicators of
microstructural complexity, including pore topology, grain
boundary integrity, and sintered network interconnectivity.
By establishing a correlation between these descriptors and
measured Ry, this study introduces a novel framework for
characterizing time- and temperature-dependent degradation
of Ag sinter via fractal analysis—thus offering new insights
into predictive thermal reliability modeling of GaN power
devices.

2.0 REVIEW OF RELATED WORK

One of the machine learning-based image tool analysis used
to quantify microstructural changes in materials is the
Trainable Weka Segmentation (TWS) - a plugin for the Fiji
platform that facilitates supervised pixel classification using
machine learning algorithms. Arganda-Carreras et al.!
introduced TWS as a highly flexible, user-friendly solution
capable of handling diverse microscopy data including light,
fluorescence, and electron microscopy images. By enabling
users to train classifiers on representative features, the tool
improves the accuracy and reproducibility of segmentation
that is critical for analyzing structural heterogeneity in
complex materials. Baranov et al.? applied TWS to
transmission electron microscopy (TEM) images of inorganic
nanoparticles. The study underscored the challenges of
traditional segmentation approaches in handling low contrast
and high background noise typical in high-resolution TEM
imaging. Through classifier training tailored to particle
morphology, the researchers achieved consistent
segmentation of nanoparticles which enabled precise
quantification of particle size distributions and morphologies,
highlighting TWS’s capacity to be adapted to domain-
specific imaging challenges in nanostructured materials.

The TWS is relevant to the investigation of microstructural
evolution in sintered silver during thermal ageing where
accurate segmentation is critical to monitor grain growth,
pore structure, and interconnectivity over time. Thermal
ageing induces significant changes in sintered silver's
microstructure including coarsening of grains, densification,
and changes in porosity—all of which should be analyzed
using high-resolution microscopy combined with reliable
image segmentation. Manual segmentation of such features is
often impractical and prone to inconsistency, especially
across large datasets or time series studies. The pixel-based
machine learning approach offered by TWS allows for
consistent and automated tracking of these microstructural
parameters across different ageinxg durations and
temperatures.

Several studies have substantiated the observed structural
transformations of sintered Ag during thermal ageing. Chen

et al.? reported that thermal ageing at 250°C promotes the
formation of necks between adjacent Ag flakes due to
nanoparticle coarsening thereby enhancing adhesion on
ENEPIG substrates. The behavior was attributed to the
Ostwald Ripening mechanism where pores increase in size
while decreasing in number with extended exposure.
Additionally, interdiffusion of Au and Ag during thermal
ageing was observed to form thermally stable Ag-Au solid
solutions further supported by increased Au grain size. In a
related investigation, Chen et al.* quantitatively analyzed the
microstructural evolution of Ag sinter paste under high-
temperature ageing in both air and vacuum conditions. The
study revealed a pronounced coarsening effect in oxygen-rich
environments where Ag oxidized to form AgO-, leading to
the formation of Ag nanoparticles that clustered within the
sintered matrix. Moreover, diffusion of Ag from the
metallization layer into the sintered bulk was found to reduce
interfacial stress and promote grain and pore growth at
elevated temperatures.

Such findings emphasize the critical role of automated
segmentation tools like TWS in accurately capturing and
quantifying thermally driven microstructural changes in
sintered materials. By bridging high-resolution imaging and
machine learning, TWS provides a scalable solution for
monitoring the evolution of material systems subjected to
complex ageing environments.

3.0 METHODOLOGY

Design of Experiments

Sample Preparation,
Testing & SEM Imaging

TWS Classifier Creation

Macro Program (TWS +
Computational Framework) Creation

Fractal Descriptors
Calculation

Response Surface
Analysis

Correlation of Fractal Descriptors to
Thermal Resistivity

Fig. 1. Schematic Diagram of the Methodological Workflow Implemented
in the Study.

3.1 Experimental Design and Sample Preparation

A full-factorial Design of Experiments (DoE) was
implemented using a 3-factor model to investigate the effects
of package type, package dimensions and HTS temperature
(refer to Table 1 for the factor levels) on microstructural
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evolution and R, performance. The experimental matrix
consisted of 12 legs each representing a unique combination
of the aforementioned factors. For each leg, 30 units of the
designated package configuration were assembled and
subjected to electrical testing to extract R, parameter. From
each leg, two representative units were selected for
microstructural analysis. Cross-sectional preparation targeted
the central region of the die to capture critical die attach
behavior. The prepared samples were subsequently imaged
using a floor-type Scanning Electron Microscope (SEM) and
the generated micrographs were later processed using
advanced image analysis techniques for fractal
quantification.

3.2 Trainable Weka Segmentation and Macro Program
Creation

The Fiji image processing software was installed on the
workstation connected to the floor-type SEM to facilitate
direct integration of image acquisition and microstructural
quantification workflows. A classifier recipe was developed
using a representative cross-sectional image randomly
selected from the pool of SEM micrographs acquired across
different experimental legs through TWS. To streamline
processing, a macro program was created by embedding a
sequence of commands within the Fiji environment. The
macro program invoked the TWS module for segmentation
which uses Gaussian Blur, Laplacian, Sobel, Gabor Filter and
Anisotropic Diffusion, and then sequentially executed the
computation of fractal descriptors and was compiled and
deployed as a Fiji plug-in, allowing seamless batch
processing. Upon execution, the plug-in autonomously
retrieved SEM images from the designated folder, performed
segmentation of region of interest (ROI) whether the sintered
particles or resin/void, computed fractal metrics, and
generated both graphical plots and raw numerical outputs.
Classified images with segmentation overlays were also
produced as part of the output, enabling visual validation of
phase recognition and quantitative analysis.

3.3 Data Analysis and Modeling

Response Surface Analysis (RSA) was performed using
Minitab version 20.4 to identify statistically significant
factors influencing A, S,,, and R,y,. For visualization and trend
analysis, A and S,, values obtained from each experimental leg
were plotted using Matplotlib in Python, allowing
comparison across varying HTS temperatures within each
package type configuration. To explore the relationship
between  microstructural  descriptors and  thermal
performance, R, values corresponding to each measured A
and S, value were plotted and analyzed using linear
regression techniques. Regression models were developed
independently for A and S,, and subsequently integrated using

multiple linear regression to formulate a predictive equation
expressing R, as a function of both descriptors.

4.0 RESULTS AND DISCUSSION

4.1 Trainable Weka Segmentation for Sintered Ag
Distinction

The analysis of the Scanning Electron Microscopy (SEM)
micrographs was conducted using the TWS plugin integrated
within the Fiji distribution of ImageJ — a machine learning-
based tool enabling pixel-level classification through
supervised learning. For each experimental sample, the
acquired SEM images were loaded directly into the TWS
interface installed on the SEM workstation which then
facilitated the segmentation and extraction of microstructural
features, as illustrated in the subsequent figure.
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Fig. 2. Graphic User Interface of TWS with the Loaded SEM Image.

The TWS algorithm was trained to differentiate sintered Ag
particles from the resin matrix and void regions. Manual
annotations were performed using the freehand selection tool
wherein representative regions were precisely outlined to
correspond exclusively to either Ag particles or resin/void.
During the annotation procedure, spatial discrimination
protocols were implemented to ensure that resin regions were
not inadvertently enclosed within the segmentation
boundaries designated for Ag particles and vice versa.
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Fig. 3. Segmentation and Classifier Training Process Using TWS. Sintered
Ag particles are annotated in red while the rest of resin and voids are outlined
in green for sample classification.

Following the annotation and classification of multiple
representative regions corresponding to the ROI within the
SEM micrographs, the TWS algorithm was trained to
perform automated pixel-based classification. Upon
successful training, Ag particles were visually mapped in red
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while the resin and void regions were rendered in green for
segmentation validation.

—
Fig. 4. Segmentation Output of Sintered Ag Against Resin and Void. The
image shows classified regions where Class 1 (voids and pores) is
highlighted in green and Class 2 (solid Ag matrix) in red demonstrating
effective pixel classification based on the trained model.

The resulting classified output was juxtaposed with the
original SEM image to assess the accuracy of phase
recognition and to verify that no boundary overlaps occurred
between the distinct material phases. A dedicated classifier
protocol or 'recipe' was developed specifically for cross-
sectional images of Ag sinter joints ensuring consistent and
reproducible segmentation across all analyzed samples.

Fig. 5. Final Classified Output Image from TWS Showing Binary
Segmentation Results. The segmented regions represent pores and voids
(green) and solid Ag matrix (red) used as input for further fractal analysis
and quantification of microstructural features.

To evaluate the flexibility of the developed segmentation
recipe, five additional SEM images with different
magnifications, spatial location along the sintered bond line,
and microstructural appearance (see Fig. 12 in Appendix)
were analyzed. The pre-trained classifier was applied,
enabling automated segmentation across diverse conditions.
All image samples were segmented and classified with high
visual and spatial accuracy, independent of variations in
particle morphology, and grayscale intensity. Consistent
performance across heterogeneous imaging scenarios
confirms the applicability of the classifier for comprehensive
microstructural analysis of sintered Ag interfaces.

4.2 Macro Program for Calculation of Fractal Descriptors
Using TWS and Computational Framework Plug-in

A macro-driven computational framework was developed to
facilitate automated fractal analysis of microstructural
features of the cross-sectional image of sintered Ag at time-

zero and after HTS read points. The custom program
integrates the machine learning and Al capabilities of the
TWS algorithm with an open-source platform engineered for
analyzing complex and non-linear systems. The macro was
programmed to autonomously retrieve each image from the
dedicated directory, apply the pre-trained TWS classifier for
pixel-level segmentation, and compute for fractal descriptors.

The A was calculated using Equation 1 to assess the degree of
spatial inhomogeneity, capturing the distribution of resin and
voids within the segmented sintered structure using sliding-
box algorithm for the scanning method. A high A value
indicates a more heterogeneous arrangement of Ag particles
while lower values correspond to uniform particle dispersion.
A second fractal descriptor which is the S,, was computed to
evaluate the relative ease of percolation within the conductive
matrix, reflecting the geometric complexity and connectivity
of sintered Ag networks, and is calculated using Equation 2
using the same scanning method.

The computational framework integrated with TWS for
lacunarity and succolarity analysis was configured using a
seven-tier box size range spanning from 1x1 to 64x64 pixels
based from the scale of the SEM images used in the study.
The sliding box algorithm was adopted as the scanning
method for characterizing highly complex structures and fine
particulate features. For succolarity analysis, the flooding
direction was set to T2D (Top-to-Down) representing the
percolative behavior of thermal conduction from the die's
active surface toward the heatsink interface.
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Fig. 6. Execution of the Custom Macro Program "Microstructure Quantifier"
Within the Fiji Environment.
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= B] (Equation 1)

A(r)
Y h—10P(BS(k))xPR(BS(k),pc)

o(BS(k), dir) = S, PR(BS(K),pc)

(Equation 2)°

Each complete execution of the macro including image
loading, segmentation, descriptor computation, and graphical
rendering was accomplished within approximately 55
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seconds per image. Outputs include numerical values for A
and S,, normalized to the image area in pixels along with
visualization plots displaying segmentation overlays and
structural descriptors. The resulting data enables systematic
and reproducible quantification of microstructural
complexity across varying sample conditions, supporting
comprehensive morphometric analysis as quantitative
differentiator of microstructural evolution of every HTS
condition and readpoint.

4.3 Application of the Machine Learning and AI-Based
Macro Program on Thermal Resistivity Shift after HTS

In order to identify the underlying factors contributing to the
observed Ry, shift exceeding 10% in the ACC package
employing a hybrid Ag sinter die attach material after 500
hours of HTS at 200°C, a Full Factorial Design of
Experiments (DoE) was implemented. The experimental
matrix was structured to systematically evaluate the influence
of multiple variables on the microstructural evolution of the
sintered joint after 500 hours of thermal aging as shown on
Table 1.

Table 1. DOE Parameters: Factors and Associated Levels

Variables Code Levels
HTS Temperature A 150 °C, 175 °C, 200°C
Package Type B ACC, OMP
. . 800 (20%10%5 mm),
Package Dimension C 1250 (32x10x5 mm)

For each experimental leg, the recorded response variables
included A and S, values extracted from the macro-based
fractal analysis along with the corresponding average R, and
percentage shift after aging. A Response Surface Analysis
(RSA) was employed to model the relationships between the
microstructural descriptors and process parameters.

Table 2. RSA Results for Lacunarity and Succolarity

Factor Lacunarity Succolarity
% %
Code P-Value P-Value
Impact Impact

A 31.87 0.000 19.24 0.000
B 52.84 0.000 68.46 0.000
A? 3.09 0.021 4.02 0.009

A-'B 9.75 0.001 6.02 0.000

Following the elimination of statistically insignificant factors
and interaction terms, the adjusted coefficients of
determination (R?q;) for A and S,, were found to be 96.14%
and 99.58% respectively. Such values indicate a strong

predictive capability of the refined models suggesting that the
selected input variables are highly effective in capturing the
variance in microstructural evolution across different test
conditions.

Based on the results, package type and HTS temperature are
both significant factors while package dimension does
influence the microstructural evolution of sintered Ag
structure based on both A and S, (calculated using Adj. SS).

Detailed examination of cross-sectional SEM micrographs
comparing the ACC and OMP configurations under identical
HTS conditions (500 hours at 200 °C), as shown in Fig. 7,
revealed pronounced microstructural disparities. In the ACC
configuration, a greater percentage of the cross-sectional area
was occupied by resin, and sintered Ag particles exhibited a
more compact and clustered morphology in relative
comparison to the distribution observed in the OMP
counterpart. Additional morphological features observed in
the ACC samples included migration of Ag particles toward
the backside metallization (BSM) and Au-plated die pad as
well as noticeably coarsened grain structures. The presence
of such features is indicative of accelerated microstructural
evolution potentially driven by environmental differences
inherent to the package architecture. The findings corroborate
the assertion made by Chen et al., wherein the distinct
microstructural characteristics observed under varying HTS
temperatures are primarily attributed to the presence of
ambient air in ACC and the vacuum-like environment
characteristic of OMP. Such environmental conditions
influence the diffusion kinetics and oxidation behavior during
thermal aging thereby contributing to the divergence in
microstructural evolution across package types’.

Fig. 7. and ACC (right) at 2500
Magnification Subjected to 500 Hours of HTS at 200°C .

Extending the HTS duration to 1000 hours at 200 °C resulted
in pronounced grain coarsening and a substantial increase in
the resin-occupied area fraction. The expansion of resin-rich
regions contributed to a noticeable reduction in the
interconnectivity of the sintered silver grain network. Fig. 7
illustrates cross-sectional micrographs of the ACC
configuration from time-zero to 1000 hours of aging. The
microstructure progressively evolved toward a less dense and
more disconnected conductive network. Such morphological
changes are indicative of advanced degradation, potentially
compromising thermal and electrical performance due to
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diminished percolation pathways. Although visual
assessment strongly suggests advanced microstructural
transformation in the ACC samples, the comparison remains
largely qualitative and subjective. A more definitive
evaluation requires the application of quantifiable metrics
capable of capturing changes in structural organization as a
function of process variables. Fractal descriptors such as A
and S, provide a mathematically rigorous means of
quantifying microstructural evolution and enable objective
differentiation of material responses influenced by package
type, HTS duration, and thermal exposure conditions.

5 AR

Fig. 8. Cross-Sectional SEM Images of ACC at (a) time-zero, (b) 200 hours,
(c) 500 hours and (d) 1000 hours at 2500% magnification of HTS at 200°C.

Experimental legs subjected to identical package types and
HTS temperatures regardless of package dimensions
exhibited comparable fractal descriptor values thereby
reinforcing the earlier statistical conclusion regarding the
insignificance of geometric size. The A exhibited a consistent
upward trend while S,, decreased progressively when plotted
against HTS temperature. Such opposing trends suggest that
elevated temperatures promote increased microstructural
disorder and reduced interconnectivity among sintered Ag
particles indicating thermally driven evolution.
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Fig. 9. Experimental Leg-Wise Variation in Lacunarity (top) and Succolarity
(bottom) for ACC and OMP Packages.

In Fig. 9, A values remained relatively constant within the
150 °C to 175 °C range but exhibited a pronounced increase
at 200 °C. The sharp rise implies the activation of Ostwald

Ripening at elevated temperatures, a phenomenon
characterized by coarsening and growth of sintered Ag
particles and resin domains leading to fewer but larger
features and increased spatial heterogeneity®. Notably, A
values for the OMP configuration at 200 °C approached those
of the ACC package at 175 °C, whereas the ACC package
subjected to 200 °C demonstrated substantially higher 2,
correlating with observed R, shifts exceeding the 10%
performance threshold (see Fig. 13 in Appendix).

The S, trends further elucidate the thermal degradation
behavior. While the OMP configuration exhibited only a
marginal reduction in S,, with increasing HTS temperature,
the ACC configuration showed a marked and nonlinear
decline. Such behavior suggests significant disruption in
particle connectivity, resulting in reduced percolation
pathways for thermal conduction. The severe drop in S, for
ACC samples aligns with the concurrent rise in A, collectively
indicating that sintered Ag structures are undergoing rapid
coarsening and disconnection at elevated thermal exposure,
consistent with Ostwald Ripening mechanisms.

Such observations point to potential thermal aging limitations
inherent to each package architecture. Specifically, the ACC
configuration appears more susceptible to microstructural
instability beyond 175°C where accelerated particle
coarsening compromises both structural continuity and
thermal performance. Sintered Ag materials may thus require
stabilization within a defined phase regime to avoid
exceeding critical resistivity thresholds and prevent
functional failure in high-temperature applications.

To further validate the observations, A and S,, values were
statistically correlated with the corresponding average R,y
measurements. The objective was to determine the degree of
association between microstructural descriptors and
functional performance metrics and to derive predictive
relationships that could inform process and reliability
guidelines for sintered die attach materials.
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Fig. 10. Correlation Plots of Thermal Resistivity Against Lacunarity (red)
and Succolarity (green) of ACC Package.
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A strong correlation was established between the computed
fractal descriptors A and S,, and the measured R, as indicated
by coefficients of determination of 0.892 and 0.961,
respectively. Such high values reflect a strong predictive
relationship  suggesting that microstructural features
quantified via fractal analysis can serve as reliable indicators
of Ry performance. The predictive power of the descriptors
implies that the degree of microstructural disorder and
connectivity as captured by A and S,, can be used to anticipate
whether R,;, will exceed critical design thresholds.

Linear regression yielded the following predictive equations:

From A,
Ry, = 1.1281 — 1.641

From S,
Ry, = —1.036S, + 1.010

Incorporating both descriptors into a multiple linear
regression model produced an enhanced expression:

Ry, = 0.4411 — 0.713S, + 0.021

The combined model achieved a coefficient of determination
of 0.938, indicating excellent predictive accuracy when both
spatial heterogeneity and connectivity metrics are used as
input variables. The model was further analyzed to define
structural specifications. Based on the regression analysis,
R¢p, shifts remain within acceptable limits (less than 10%)
when A does not exceed 1.87 and S,, remains above 0.50.
Such thresholds provide a quantifiable basis for interpreting
cross-sectional micrographs and assessing the potential risk
of thermal performance degradation.

The analysis enabled the establishment of a quantitative
framework for describing and comparing microstructures
post-HTS. Furthermore, the findings offer scientific and
mathematical validation that microstructural evolution plays
a critical role in Ry, shifts, thereby identifying a potential root
cause for performance failure in accelerated thermal stress
testing.

5.0 CONCLUSION

The study establishes a quantitative approach in describing
the microstructural evolution of hybrid sintered Ag during
thermal ageing as an effective approach in failure analysis of
the out-of-specification shifts of R.,. The observed increase
in thermal boundary resistance is closely associated with
temperature-driven morphological changes in the Ag sinter
including grain coarsening, pore growth, and disruption of
interfacial connectivity. By applying advanced Al-based
image segmentation and extracting fractal descriptors such as
A and S, the evolution of microstructural complexity was

successfully correlated with R;, as inference of thermal
limitation of hybrid sintered Ag on each package type. The
findings not only validate the critical role of sintered structure
in thermal performance but also demonstrate the potential of
fractal analysis as a predictive tool for reliability assessment
in high-temperature power applications.

6.0 RECOMMENDATIONS

To further improve the study, it is recommended that future
studies incorporate HTS time readpoints at multiple intervals
per temperature condition. The addition would enable
calculation of the thermal acceleration constant and facilitate
a more accurate modeling of microstructural degradation
kinetics. Further validation of the methodology can also be
pursued by applying the analysis to pure Ag sinter type
thereby allowing comparison of microstructural evolution
rates between hybrid and pure Ag die attach materials. In
addition, expanding the scope of the study to include other
RF power package types such as Quad Flat No-Lead (QFN)
and Land Grid Array (LGA) configurations would support a
more comprehensive understanding of the thermal
performance limits of hybrid sintered Ag across diverse
package architectures.
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10.0 APPENDIX

Classified image

Regression: Start: |1 End: 10

Result: y = 0.8352453244648504 - 0.12899351809457896 x 12 = 0.9597270676036982

Fig. 11. Logarithmic Plot of Calculated Lacunarity Values Against

Increasing Box Size

Eig. 12. Classified Output Image from TWS Showiné Microstructural
Appearance of the Sintered Ag Bond Line

In Equation 1, E (x) represents the expected value of x while
M(r) = A(r)rP denotes the contained within a box of size r
constrained by the condition logA /logr -0 [5]. In
Equation 2, BS refers to the box size in pixels, n indicates the
total number of box divisions over an image, OP is the
occupation percentage, PR represents the applied pressure of
the percolating fluid, and pc corresponds to the position on x
or y of the centroid of the box on the scale of pressure [6].



