

PREDICTIVE TESTING FOR LONGEVITY: EXTENDING SHELF LIFE OF PROTECTIVE LINERS THROUGH ACCELERATED AGING

Reinadd Jan B. Abad

Carissa G. Aguila

Judioz M. Manejero

WT & TNF Process Engineering – Operations 2

STMicroelectronics Incorporated

#9 Mt. Drive, LISP2, Brgy. La Mesa, Calamba City, Laguna 4027

reinaddjan.abad@st.com, carissa.aguila@st.com, jude.manejero@st.com

ABSTRACT

This STMicroelectronics Calamba project aims to evaluate the feasibility of extending the shelf-life of B201 Protective liners to 36 months to meet the growing demand from Customer.

The shelf life of protective liners is a critical factor in ensuring their effectiveness and reliability across various industrial applications, including automotive, construction, and packaging. This study explores strategies for extending the shelf life of protective liners through accelerated aging tests.

By simulating long-term environmental exposure in a controlled, accelerated manner, these tests provide valuable insights into the material degradation processes and help predict the lifespan of liners under real-world conditions. The research focuses on key factors influencing shelf life, such as material composition, environmental conditions, and storage practices. Findings suggest that selecting durable materials, optimizing storage environments, and employing rigorous quality control measures can significantly enhance the longevity of protective liners.

The evaluation involves a detailed analysis of the B201 Protective liner's material properties, focusing on enhancing durability and longevity. Techniques such as involves a thorough inspection of the raw materials to identify any signs of degradation or compromised performance over aged conditions are tested. Accelerated aging experiments are conducted to simulate extended materials shelf-life.

Initial findings suggest that with the application of targeted preservation methods, the B201 liners can achieve the desired shelf-life extension while maintaining quality standards.

Extending the shelf-life of B201 liners is achievable and essential for supporting Customer care demand, ensuring product reliability and supply chain efficiency.

Additionally, the study highlights the importance of integrating accelerated aging tests into the product development cycle to identify potential weaknesses and improve material formulations. This approach not only ensures product reliability but also contributes to cost savings and environmental sustainability by reducing waste and the need for frequent replacements.

1.0 INTRODUCTION

As the liner materials have surpassed their recommended shelf-life, it is crucial to evaluate their current condition and determine their suitability for continued use. The introduction outlines the need for a comprehensive assessment of the expired liners, identifying potential risks and degradation that may impact manufacturing efficiency and compliance with industry standards. By understanding the challenges posed by expired materials, we can develop strategic solutions to mitigate risks, ensure quality assurance, and optimize resource management.

Due to B201 expired liner materials, ST Calamba decrease in demand for B201 from Customer and outlines the strategic approach to align future supply with the projected Customer Care demand of 1.8 million units for 2025. The unexpected demand drop presents challenges in maintaining efficient inventory and production planning. With the next loading scheduled between March and April, it is imperative to reassess our supply chain strategies to ensure readiness for the anticipated demand. Also taking into account the MOQ from raw material supplier which will incur additional cost.

The challenge is need for a thorough examination of the materials to identify any degradation or loss of performance that may affect product quality and compliance with industry standards. By understanding the implications of the extended shelf life, we can make informed decisions regarding reconditioning, replacement, or continued use to maintain operational efficiency and product integrity.

Expired Liner Material cost high impact and significant cost implications associated with expired materials and their impact on operational efficiency and financial performance. As materials surpass their shelf life, they may lead to increased waste, reduced product quality, and potential disruptions in the production process.

To avoid high-cost problem, this project addresses these challenges to minimize financial losses and maintain supply chain integrity. By analyzing the factors contributing to high costs, such as disposal expenses and the need for replacement materials, we can develop strategies to mitigate risks and optimize resource management. Understanding the cost impact of expired materials is crucial for making informed decisions that support long-term sustainability and profitability.

1.1 Protective Liner/Film

Protective liners are materials used to safeguard surfaces or products from damage, contamination, or wear. They are commonly used in various industries, including manufacturing, semiconductor, automotive, construction, packaging, and electronics. In Figure 1 shows the 3M Protective Liner material used to protect B201 Optical device lens during High temperature processes.

3M Heat Resistive Polyimide Tape is a heat resistive polyimide process tape with electrostatic discharge (ESD) properties on the polyimide backing layer. The adhesive is a thermally cross-linkable acrylic copolymer that provides good initial adhesion and has less adhesion build-up even after high temperature.

Figure. 1. B201 Module with Protective Liner

1.2 Expired Liner Materials

Expired liner materials refer to those that have surpassed their recommended shelf life, typically set by manufacturers to ensure optimal performance and reliability. For B201 Protective liners, expired materials can affect the peel test performance once it reaches the guaranteed shelf life, referring to below Figure. 1.

Over time, expired liners may lose their structural integrity, leading to compromised performance. Using expired materials can result in product defects or failures, impacting customer satisfaction. Managing expired materials can incur additional costs, including disposal, replacement, and potential production delays.

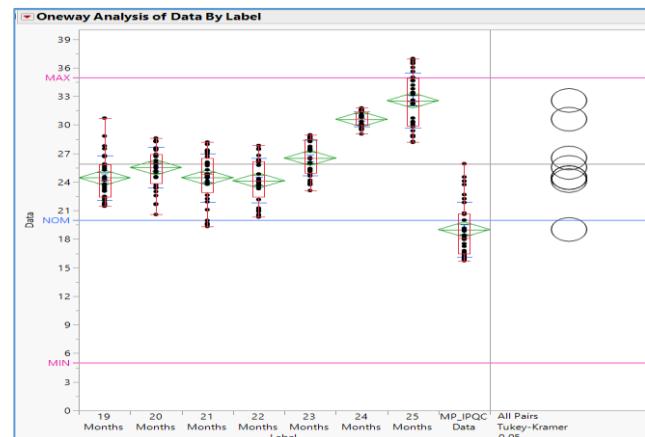


Figure. 2. Anova plot for B201 Expired Liner Materials more than 24 months

1.3 Liner Attach Process

A liner attach machine is a specialized piece of equipment designed to automate the process of attaching liners to various surfaces or products. These machines are commonly used in manufacturing and packaging industries to improve efficiency, consistency, and precision in liner application.

Figure. 3. MIT LB800 Final Liner Attach Machine

2.0 REVIEW OF RELATED WORK

The Arrhenius equation is commonly used to relate the rate of aging to temperature. It assumes that the chemical reactions responsible for aging follow a predictable pattern.

The Arrhenius-Peck relationship is a model used in accelerated aging tests to predict the life of a product under

different temperature and humidity conditions. This model combines the Arrhenius equation (for temperature acceleration) with the Peck model (for humidity acceleration) to calculate an overall acceleration factor. This factor helps determine how much faster a product will age under accelerated test conditions compared to real-world use conditions.

For this project, Calculated lifetime is 1.13-1.14 years using the Arrhenius-Peck Model (considering no observed failure at 65 deg C/90% RH at 400 hrs and activation energy used is polymer thermal aging = 0.1 – 0.23eV) which is also aligned with Customer specification in Table 1 below.

Table. 1. Core Tech Optical Sensing Commodity Quality Requirements

Accelerated storage temperature (°C)	40	65	85
Accelerated storage temperature (K)	313.15	338.15	358.15
Number of hours in accelerated storage tests	Number of years that the accelerated storage tests are simulating		
100	0.04	0.29	1.10
200	0.08	0.59	2.19
300	0.13	0.88	3.29
400	0.17	1.18	4.38
500	0.21	1.47	5.48
600	0.25	1.76	6.58
700	0.29	2.06	7.67
800	0.34	2.35	8.77
900	0.38	2.64	9.86
1000	0.42	2.94	10.96
1100	0.46	3.23	12.06
1200	0.51	3.53	13.15

3.0 METHODOLOGY

3.1 DOE Methodology Legs

Perform Liner shelf-life extension study using ST Material Engineering Plan. Conducting a linear shelf-life extension study using the ST Material Engineering Plan involves systematically evaluating the longevity and stability of a product under specific conditions. The process begins with defining the study's objectives, such as extending the shelf life by a certain period. Key materials are selected to ensure they represent typical production batches. See Figure 4.

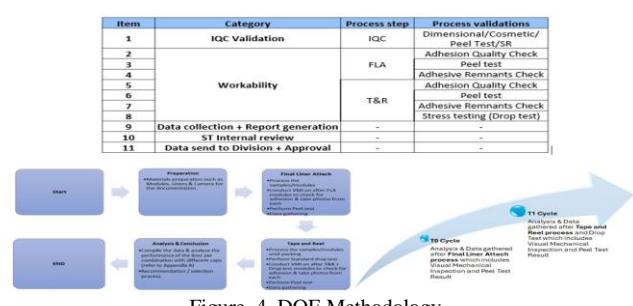


Figure. 4. DOE Methodology

3.2 Accelerated Ageing Test Methodology

Accelerated aging tests are a valuable method for predicting the shelf life of protective liners and other materials. These tests simulate the effects of time on a product by exposing it to elevated conditions such as temperature, humidity, and light, thereby accelerating the aging process. Accelerated aging tests aim to estimate the long-term effects of environmental factors on materials in a shorter time frame. This helps in predicting the shelf life and ensuring the reliability and safety of the product.

Accelerated aging tests are a powerful tool for predicting the shelf life of protective liners. By carefully designing and conducting these tests, manufacturers can ensure product reliability and extend shelf life, ultimately leading to cost savings and improved customer satisfaction. Here's a comprehensive guide on how to conduct accelerated aging tests to extend the shelf life of protective liners. See Fig. 5.

Steps for Conducting Accelerated Aging Tests

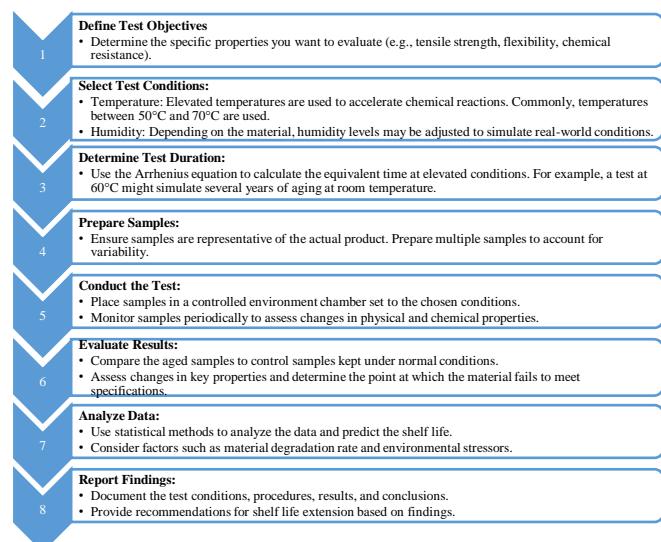


Figure. 5. Procedure on Accelerated Aging Tests

3.2.1 Evaluation of Existing Material (Normal aging) + REL at module level

- Use existing material with T0 qualification.
- Perform REL at module level - Proposal is to use Customer Spec "CoreTech Optical Sensing Commodity Quality Requirements (099-28157-B)" for accelerated aging. Bake at 65 deg C / 90% RH for 400 hrs. Equivalent to 1.18 Year shelf life
- Perform Shipping Combo in reference to 099-28157-B
- The test will provide assessment for 12 months condition at Module level.

Table. 2. Evaluation of Existing Material Project timing

3.2.2 Evaluation of Material with Accelerated aging at Raw Material level + REL at module level

- Do accelerated aging at raw material (supplier side) to consider +12 months in shelf life (= 36 months).
- Build material on baked material and ship to STC for evaluation.
- REL at module level - Proposal is to use Customer Spec “CoreTech Optical Sensing Commodity Quality Requirements (099-28157-B)” for accelerated aging. Bake at 65 deg C / 90% RH for 400 hrs. Equivalent to 1.18 Year shelf life
- Perform Shipping Combo - The test will provide assessment for 36 months old material at T0 + 12 months condition at Module level.

Table. 3. Evaluation of Material with Accelerated aging at Raw Material level + Rel at module level Project timing

3.2.3 Evaluation Plan and Qualification Criteria

• No machine error encountered during the P1

Table. 4. Qualification Criteria

Step	Cycle	Station	Samples	Before Peel test VMI criteria	Peel Test Criteria	After Peel test VMI criteria	TOF-SIMS Criteria
1	T0	FLA	32a	Pass on liner adhesion check (No sign of bulging or potential liner drop)	Peel Force response must be within specifications	No visible adhesive remnants (low power microscope)	N/A
2	T2	Tape & Peel + Drop Test	32a	Pass on liner adhesion check (No sign of bulging or potential liner drop)	Peel Force response must be within specifications	No visible adhesive remnants (low power microscope)	N/A

Materials and methods for the evaluation plan and qualification criteria from T0 cycle – Final Liner Attach process up to T2 cycle – Tape and Reel + Drop Test.

3.2.4 Module Reliability Test Requirement for Shipping Combo

Table. 5. Module Reliability Test Requirement

Stress Name [Abbreviation] (Reference)	Test Parameters	Spec	Failure Mode	Allowable Fail Rate (Design)	Allowable Fail Rate (Config)
Package Vibration (080-5443)	<ul style="list-style-type: none"> • UUT's must be placed in shipping container during stress application • Vibration profile: Truck followed by Air • Orientation: X, Y, Z • Duration: 30min in axis per vibration spectrum (total 180min) • Read points: after truck, after air 	180 min	All failure modes called out per ERS	0F/90	0F/22
Package Storage (080-1653)	<ul style="list-style-type: none"> • UUT's must be placed in shipping container during stress application • Vibration profile: 3 cycles of extreme, followed by 10 cycles normal • Read points: after extreme profile (3 cycles), after normal profile (10 cycles) 	10 cycles	All failure modes called out per ERS	0F/90	0F/22
Package Drop (062-0087)	<ul style="list-style-type: none"> • UUT's must be placed in shipping container during stress application • Impact surface: 0.75mm thick particle board (durometer 75D2 durometer shore D) • Drop order/orientation: refer to section 8.03.3 in 062-0087 • Section height: refer to section 8.03.4 in 062-0087 • Read points: after 6th, 10th drop 	10 drops	All failure modes called out per ERS	0F/90	0F/22

Stress Test or Reliability Test requirement for shipping combo such as:

- Package Vibration for 10 minutes
- 3 cycles of extremes temperature and humidity profile, followed by 10 normal cycles for Package Storage.
- 10X drops of Package Drop Test.

4.0 RESULTS AND DISCUSSION

4.1 IOC Test Data of Expired Liner

ST CALAMBA IQC / INSPECTION REPORT						
MATERIAL CODE	SUPPLIER / FAB / EWS	SUPPLIER SITE	MATERIAL DESCRIPTION	IQC SPEC & REV.	DRAWING & REV.	
SAK20272	CEL	CHINA	80101 LINER	DA00919257	S.0	DA00920209
GRN No.	INVOICE NO.	INVOICE CITY.	SUPPLIER LOT NO.	MATERIAL TYPE	DATE RECEIVED	DATES INSPECTION PERIOD
N/A	WM20231231005	1 ROLL	2952620	80101 LINER	20-Dec-2024	26-Dec-2024
C of C Available	DAIR No. (See Applicable)		REMARKS	INSPECTOR	FINAL DISPOSITION (ACCEPT/REJECT)	
N/A	N/A	N/A	VISUAL: PASSED DIMENSION: PASSED STRENGTH: PASSED	295262	ACCEPT	

34th ASEMEP National Technical Symposium

2. Mechanical Inspection: Peel Test/Surface Resistance Check

IQC Inspection Items	MaxPeak @ Peel Interval	MinForce @ Peel Interval	AvgForce @ Peel Interval	Converted Test results	Tolerance
Spec.					
LSL					
USL					
1	3.09	2.82	2.98	1.192	
2	3.08	2.57	2.72	1.088	
3	3.13	2.50	2.66	1.064	
4	3.04	2.64	2.85	1.152	
5	2.79	2.56	2.67	1.068	
MIN	3.09	2.82	2.98	1.192	
MAX	3.09	2.56	2.66	1.068	
Mean	2.966	2.656	2.782	1.112 0.9-2.3N/cm	
SDEV	0.144	0.107	0.141	0.057	

Figure. 7. Liner IQC Data of Expired Materials

- Dimensional and Visual Cosmetic Inspection Passed
- Mechanical peel test at coupon level Passed
- Surface Resistance Measurement Passed

4.2 Supplier Accelerated Aging Test Result

Table. 6 & 7. Stokvis and CCL Accelerated Aging Test Result

Supplier: STOKVIS	
Raw Material	3M 7418E
3M Batch No	07Y22Y19
Raw Mfg Date	07/2022
Material Expired date	12/4/2024

Activity:	
Age of material from time of test	26 months
Peel Test	Strip sample @ 25mm*300mm using SUS plate

Peel test @ T0			
Lot No.:	02Y22Y19		
Report Date:	2025.1.14		
Part No.	3M7418E		
Supplier	3M		
Material #/th	25mm		
Tester	LML		
Test standard	GL/T 2792		
Test speed	200mm/min		
Storage period	20MIN		
Rolling times	3times		
Weight	280		
Test No.			
section max load	section min load	section average load	
(N)	(N)	(N)	
3M7418E-1	3.54	3.41	3.46
3M7418E-2	3.33	3.2	3.26
3M7418E-3	3.63	2.81	3.51
Max	3.63	3.41	3.51
Min	3.33	2.81	3.26
Average	3.5	3.14	3.41
TEST Result	3.11N/25mm=1.36	Result	1.36N/cm
Criterion:0.9-2.3N/cm	40N/cm		

Peel test after Accelerated Aging			
Lot No. (02Y22Y19)	Report Date: 2025.02.12		
Part No.	3M7418E		
Supplier	3M		
Material #/th	25mm		
Tester	1M		
Test standard	GL/T 2792		
Test speed	200mm/min		
Storage period	60MIN		
Rolling times	2times		
Weight	280		
Test No.			
section max load	section min load	section average load	
(N)	(N)	(N)	
3M7418E-1	3.53	3.26	3.37
3M7418E-2	3.47	3.34	3.43
3M7418E-3	3.5	3.24	3.37
Max	3.53	3.34	3.43
Min	3.47	3.24	3.23
Average	3.5	3.33	3.34
Criterion:0.9-2.3N/cm	40N/cm		
TEST Result	3.11N/25mm=1.36		
Result	1.34N/cm		
Remark: No glue residue on SUS plate			
Test method: Test 3M7418E material-Baking 65°C for 4weeks (0.7hrs) → setting on Strip test 25mm*300mm 30s sample pasted on SUS plate→20min → Peel test			
Specs:			

Conclusion: Peel test after aging is at 1.34N/cm passing the spec criteria of 0.9-2.3N/cm.

Supplier: CCL	
Raw Material	3M 7418E
3M Batch No	01X22X16
Raw Mfg Date	11/2022
Material Expired date	11/1/2024

Peel test after Accelerated Aging	
No.	最大剥离强度(max peeling strength (N/cm))
1	1.610
2	1.547
3	1.854
4	1.647
5	1.6876
最大(MAX)	1.704
最小(MIN)	1.547
平均(AVERAGE)	1.66792
No.	最小剥离强度(min peeling strength (N/cm))
1	1.465
2	1.315
3	1.697
4	1.655
5	1.884
最大(MAX)	1.885
最小(MIN)	1.315
平均(AVERAGE)	1.679
No.	平均剥离强度(Average peeling strength (N/cm))
1	1.51
2	1.44
3	1.698
4	1.619
5	1.734
最大(MAX)	1.83
最小(MIN)	1.34
平均(AVERAGE)	1.537
No.	强度偏差强度(Strength deviation strength (N/cm))
1	1.465
2	1.315
3	1.697
4	1.655
5	1.884
最大(MAX)	1.885
最小(MIN)	1.315
平均(AVERAGE)	1.584

Conclusion: Peel test after aging is at 1.58N/cm passing the spec criteria of 0.9-2.3N/cm.

Summary:

Stokvis: 26-month-old material

Passed Peel test after 4 weeks accelerated aging.

- T0: 1.36N/cm
- After aging: 1.34N/cm
- Spec: 0.9-2.3N/cm

CCL: 27-month-old material

Passed Peel test after 4 weeks accelerated aging.

- T0: 1.62N/cm
- After aging: 1.58N/cm
- Spec: 0.9-2.3N/cm

Raw Material supplier advice - accelerated aging is equivalent to +12 months. With passing peel test data, 3M B201 liner material is guaranteed for additional 1 year from current material age.

4.3 Peel Force Summary Data

Table. 8. Peel Test Results

PRODUCT	CAP TYPE	CONVERTER	MATERIAL	SAMPLE	PROCESS CHECK	MIN Peel Force (g-f)	MAX Peel Force (g-f)	MEAN Peel Force (g-f)	Std Dev Peel Force (g-f)	CPK Initial Limit
B201 Atlantis	IGT	CCL	3M7418E	32	T0 (Post FLA)	21.32	28.76	24.93	2.478	1.353
				32	T1 (Post Thr + Drop Test)	24.89	29.99	27.51	1.823	1.368
	XPT	CCL	3M7418E	32	T0 (Post FLA)	23.03	28.17	24.85	1.449	2.333
				32	T1 (Post Thr + Drop Test)	27.21	30.93	29.15	1.102	1.438

Based on the Summary of Peel test result, both IGT and XPT Cap PASSED Target CPK (>1.33) and ALL Peel test data are within specs tolerance subjected at different cycles (T0 vs T1) using CCL_3M7418E material.

4.4 Variability Chart for Peel Force

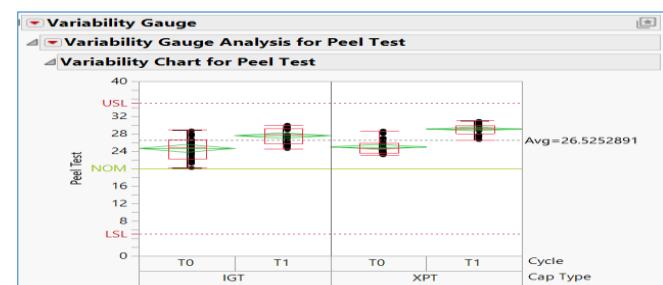


Figure. 8. Variability Chart for Peel Force (gF):

- Both Cap (IGT and XPT) using 3M7418E Liner shows stable readings at different cycles and PASSED on defined specification limits from 5 to 35 gF but slightly above nominal target of 20gf (Avg=26.52gf).
- Liner material 3M7418E on both IGT and XPT cap shows stable performance and normal adhesion response from T0 to T1 cycles.

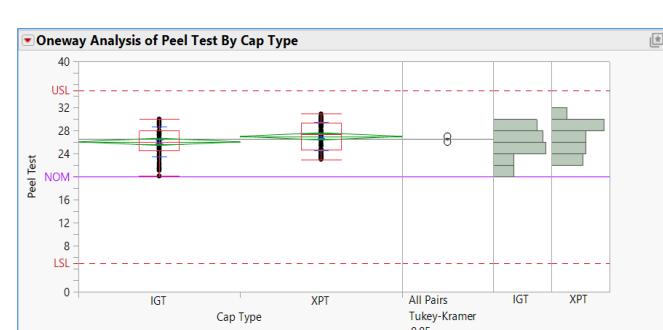


Figure. 9. One way analysis for Peel Force (gF):

34th ASEMEP National Technical Symposium

Correlation data from interaction plots showed that mean from liner material 3M7418E on both cap (IGT and XPT) is BOTH within Peel Test specs limit and almost have the same performance. Both CAP type is correlated based on Tukey-Kramer analysis.

4.5 Adhesion Quality Inspection and Remnant Inspection

Table. 9. Adhesion Quality Inspection

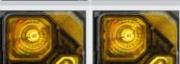

SAMPLE IMAGES after FINAL LINER ATTACH						RESULTS
						Adhesion quality PASSED after Final Liner Attach
						Adhesion quality PASSED after Final Liner Attach

Table. 10. Adhesion Remnant Inspection

ADHESION QUALITY INSPECTION - AFTER PEEL OFF						
CCL						
PRODUCT	CAP TYPE	CONVERTER	MATERIAL	T0 (Post FLA)	T1 (Post TMR + Drop Test)	REMARKS
B291 Atlantis	IGTANT	CCL	3M7418E			<p>There is no adhesive remnant observed after the peel off → PASSED Sample Qty: 32 samples/cycle/cap</p>
	XPT	CCL	3M7418E			<p>There is no adhesive remnant observed after the peel off → PASSED Sample Qty: 32 samples/cycle/cap</p>

Both Cap (IGT and XPT) using 3M7418E Liner shows passed adhesion quality inspection check and adhesion remnant inspection on different test stages after FLA, Tape and Reel and Drop Test. Refer to Table 9 and 10.

4.6 Peel Test Response after Reliability Test

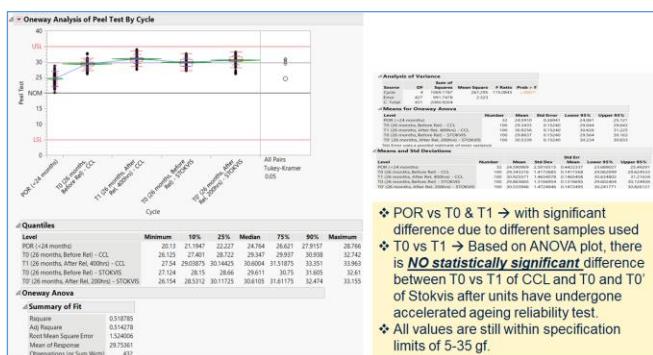
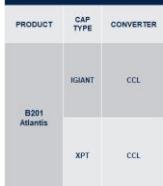
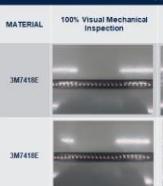
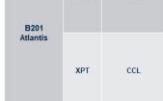





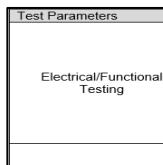
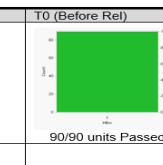
Figure. 10. REL Test Peel Test Results

- T0 vs T1, based on ANOVA plot, there is NO statistically significant difference between T0 vs T1 of CCL and T0 and T1 of Stokvis after units have undergone accelerated ageing reliability test.
- All values are still within specification limit of 5-35gf.

4.7 Module Sticky Test after Reliability Test

Table. 11. Module Sticky Test Results

CTST (Cover Tape Sticky Test) and USCT (Unit Stuck on Carrier Tape) Checking							
CCL							
PRODUCT	CAP TYPE	CONVERTER	MATERIAL	100% Visual Mechanical Inspection	CTST (Cover Tape Sticky Test)	USCT (Unit Stuck on Carrier Tape)	REMARKS
B291 Atlantis	IGTANT	CCL	3M7418E				<ul style="list-style-type: none"> • No modules sticking on the cover tape → PASSED • No modules stuck on carrier tape → PASSED • Sample Qty: 2 strips/pc/cap
	XPT	CCL	3M7418E				<ul style="list-style-type: none"> • No modules sticking on the cover tape → PASSED • No modules stuck on carrier tape → PASSED • Sample Qty: 2 strips/pc/cap



On Both IGT and XPT, Cover Tape Sticky Test and Unit Stuck on Carrier Tape Test results – PASSED which shows no ESD build up after REL

- No modules sticking on cover tape.
- No modules stuck on carrier tape.

4.8 Electrical/Functional Testing and Drift Analysis After Reliability Test

4.8.1 Module Accelerated Test

Table. 12. Accelerated Test Results

Test Parameters	T0 (Before Rel)	T1 (After Rel)	Remarks
Electrical/Functional Testing			All sample units passed (Bin 1) 90/90 units Passed
Drift Analysis	Passing defined limits on Test parameters	Passing defined limits on Test parameters	No observed drifting on critical parameters (as per Reliability Test Specifications) ATLANTIS_LIN-SPE_T_0_vs_T1.pptx

All units passed (BIN 1) at Electrical/Functioning Test. No observed drifting on critical parameters and passing defined limits on test parameters based on reliability test specifications.

4.8.2 LIV Test

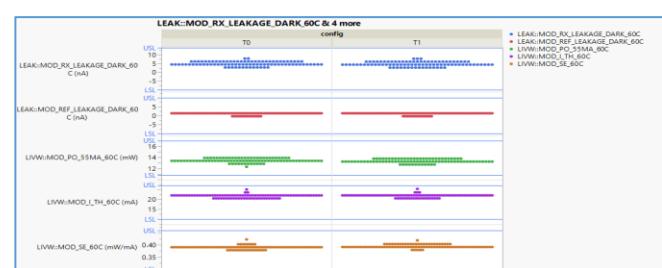


Figure. 11. LIV Test Plot

- All units passed (BIN 1) at Electrical/Functional/Optical Test at LIV Test stage.
- Statistical plot shows all units passed (BIN 1) after SPEA Drift test and no drift from T0 to T1 After Rel

4.8.3 SPEA Test

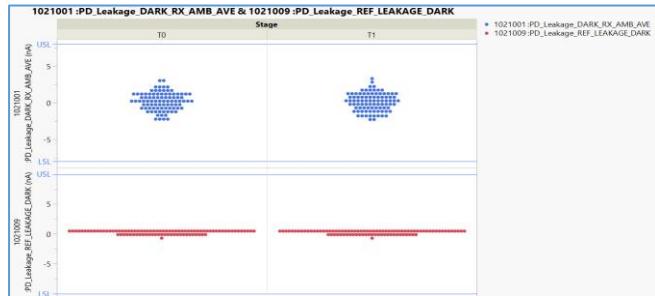


Figure. 12. SPEA Test Plot

- All units passed (BIN 1) at Electrical/Functional/Optical Test at SPEA Final Module Test stage.
- Statistical plot shows all units passed (BIN 1) after SPEA Drift test and no drift from T0 to T1 After Rel

4.9 Manual Liner Removal Simulation on T0 and T1 Samples (Replicate End customer process)

Table. 13. T0 and T1 Manual Liner Removal Result

Condition	Reference Photo	Result
T0 – Before Rel (After Liner attach)		20/20 samples passed and successfully removed liner manually (see also video as separately shared)
T1 – Post Reliability		20/20 samples passed and successfully removed liner manually (see also video as separately shared)

Procedure:

1. Sample preparation: Place samples with liner on adhesive tape to simulate condition with FATP or Final Assembly and Test Package (module is already soldered within the system).
2. using an ESD plastic tweezer, manually peel-off liner on B201 modules starting from the tab toward the opposite side.
3. Conduct visual inspection for adhesive residue (magnification: 30X).

Figure. 13. Manual Liner Removal FA Result (100% Optical Inspection)

Result:

No adhesive residue observed on the cap surface on all inspected samples during 100% VMI.

4.10 Control Run (CR) Samples at Customer level

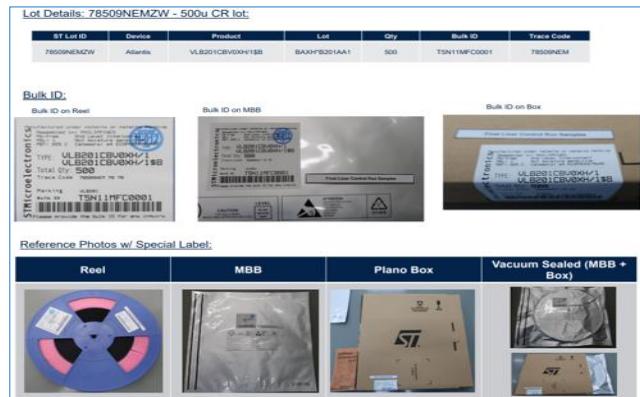


Figure. 14. Control Run Samples

ST Calamba to prepare Control run samples to FATP (1 Reel/500 units) using the aged Stokvis/CCL material to check the response during manual liner removal process at customer side.

HH TY CSD D73 Atlantis CR yield and FA report

Hi ALL :

Here comes D73 Atlantis CR yield and FA report for your kindly review,no special issue,pls noted.

TY CSD D73 Atlantis Atlantis CR Yield Report			
Category	Actual Yield	Target Yield	Defect Rate
Overall	99.9%	100.0%	0.00%
Work Productivity	99.9%	100.0%	0.00%
Material	99.9%	100.0%	0.00%
Process	99.9%	100.0%	0.00%
Test	99.9%	100.0%	0.00%
Reliability	99.9%	100.0%	0.00%

FATP Breakdown By Category			
Overall	99.9%	100.0%	0.00%
Work Productivity	99.9%	100.0%	0.00%
Material	99.9%	100.0%	0.00%
Process	99.9%	100.0%	0.00%
Test	99.9%	100.0%	0.00%
Reliability	99.9%	100.0%	0.00%

Figure. 15. FATP Result

No issues encountered at FATP downstream customer during processing of CR samples as confirmed in Figure. 15.

34th ASEMEP National Technical Symposium

4.11 Project Cost Savings (Liner Raw Materials Cost Impact):

Existing Liner Raw material at supplier already reached 24 months old shelf life

- 6.5Mpcs equivalent at CCL
- 4.3Mpcs equivalent at Stokvis

Liner Raw Material cost impact:

- 85.2K\$ on CCL
- 73.6K\$ on Stokvis

Note: In case of Fresh material build, MOQ requirement is 26 rolls equivalent to 6.5Mpcs.

Total Cost Savings: 161.5K\$

5.0 CONCLUSION

The successful implementation of accelerated aging tests for protective liners has proven to be an invaluable tool in predicting and extending their shelf life. Through careful simulation of environmental conditions such as temperature, humidity, these tests provide critical insights into the long-term performance and durability of liner materials. The study confirms that accelerated aging tests can effectively identify potential degradation pathways and material weaknesses, allowing for targeted improvements in material formulations and manufacturing processes.

Key findings indicate that selecting materials with inherent resistance to environmental stressors, optimizing storage conditions, and implementing robust quality control measures are essential strategies for enhancing the longevity of protective liners. By accurately predicting the lifespan of liners, manufacturers can ensure product reliability, reduce waste, and achieve significant cost savings.

Furthermore, the integration of accelerated aging tests into the product development cycle enables proactive identification of potential issues, facilitating continuous improvement and innovation. This approach not only supports the development of high-quality, durable liners but also contributes to sustainability efforts by minimizing the frequency of replacements and reducing environmental impact. Overall, the success of accelerated aging tests underscores their importance as a standard practice in the development and quality assurance of protective liners.

With the result and based on the findings after different simulations and experiments have been performed, it was proven that shelf-life extension of Protective liner material passed Engineering evaluation both for Raw Material Accelerated ageing test and Module Reliability test which guarantees additional 12 months from the expiration date.

With the provision of the extended Shelf life of Protective liners through Accelerated Aging and Predictive testing, we have successfully consumed expired stocks without any customer quality issues and achieved significant cost savings, manufacturing sustainability and significant impact on operational efficiency and financial performance.

6.0 RECOMMENDATIONS

The current study can be interpreted as a successful predictive testing solution by extending the Shelf life up to its maximum life span by using accelerated aging test. With the positive result of the study, STMicroelectronics Calamba recommends extending the shelf life of B201 Liner to 36 months to support Customer demand and we can implement this change and consume for mass production and can also be sustained to other future devices using the same liner material.

7.0 ACKNOWLEDGMENT

The authors would like to acknowledge the management of STMicroelectronics Calamba who continuously inspire their technical staff to create innovative solutions in our changing technology landscape and customer demand. We recognize the support of our department sponsor and Operations 2 Director Ms. Aileen V. Gonzales and for her leadership and encouragement to finish the project. The whole Process Engineering team's support during the evaluation phase. Also, not to mention the invaluable support from Incoming quality control and Supplier Quality Engineering team in making this project a success.

8.0 REFERENCES

1. **MIT Semiconductor Pte Ltd**
<https://mit.com.sg/consumer/>
2. **3M™ Heat Resistive Polyimide Tape 7418E**
Electronics Materials Solutions Division
www.3M.com/electronics
3. **DESIGN for RELIABILITY Concepts in Accelerated Testing**
DfRSoft.com

9.0 ABOUT THE AUTHORS

Reinadd Jan B. Abad, is currently a Senior Test and Finish Process Engineer in STMicroelectronics and is assigned at Test and Finish department for Operations 2. He received his B.S Degree in Electronics and Communications Engineering from University of the Cordilleras in Baguio City.

Carissa G. Aguila is currently a Test and Finish Process Technician in STMicroelectronics since 2017 and is assigned at Test and Finish department for Operations 2. She received her B.S Degree in Industrial Technology at Southern Luzon State University Tiaong, Quezon.

Judioz M. Manejero is currently a Test Process Manager in STMicroelectronics and is managing Test and Finish department for Operations 2. He received his B.S Degree in Electronics and Communications Engineering from Mapua University in Intramuros, Manila.

10.0 APPENDIX

Appendix A – Reliability Test Equipment and Specifications

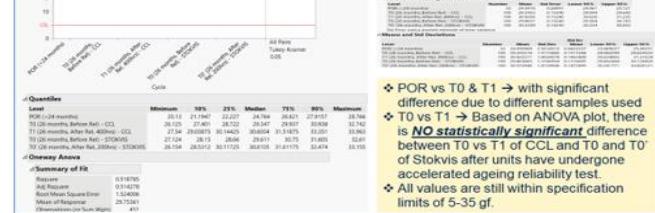
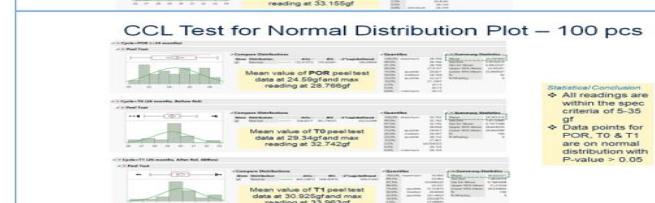
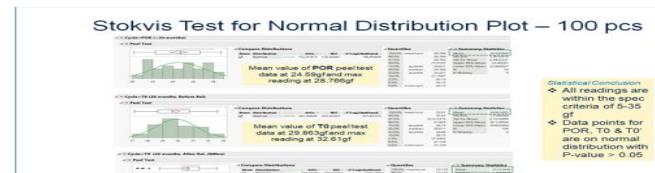
BRAND	TYPE OF SERVICE	ED
Votch	Trunk, Hospital Chamber	PM18TH005
	External	

Condition: 65C/90%RH, 400hrs

Module Shelf-life Accelerated Test	65C/90%RH, 400hrs Jan 18, End 18	Samples Ready for Pick up @ REL-OP1 Office
---------------------------------------	-------------------------------------	---

Shipping Combo	Package Vibration	Package Storage	Package Drop	Samples Ready for Pick up @ REL OPS1 Office
	Jan 18	TBD Ongoing MBO	TBD	TBD

Machine #	Brand	Model	Serial No.	ST Asset Tag #	Stress / Description
8000-VB01	Spectral Dynamics	SD-2400-233M	51808018	2013136	Heavy Set Down / Random Vibration
(080) 5442	Package Vibration	<ul style="list-style-type: none"> UVLT's must be placed in storage container during stress application UVLT's must be placed in a sealed bag Orientation X, Y, Z UVLT's must be placed after vibration (idle 5 minutes) 	180 min	All fixture modules called out per ERS	




	Random Vibration Shaker
Package Drop (062-0087)	<ul style="list-style-type: none"> UUT's must be placed in shipping container during stress application Impact surface: 0.75" thick particle board, drywall, 75% penetrometer shore D Drop height/orientation: refer to section 8.0.3 in 062-0087 Drop height: refer to section 8.0.3 in 062-0087 Read points: after 6th, 10th drop <p>10 drops</p> <p>All failure modes called out per ERS</p>

BRAND	TYPE OF SERVICE	I.D
WEISSTECHNIK	Temp. Humidity Chamber External	PM1RTH007
Package Storage (080-1653)	<ul style="list-style-type: none"> Unit must be placed in shipping container during stress application Temp and humidity profile: 3 cycles between 40°C and 50°C Read points: after extreme profile (3 cycles), after normal profile (10 cycles) 	10 cycles All failure modes called out per ER

Appendix B – Peel Test Response after REL Testing

Appendix C – Liner Adhesion Test after REL Testing

Reference Images Before Peel Test							Result
							Adhesion quality PASSED before Peel test (After Ref)
							Adhesion quality PASSED before Peel test (After Ref)
Reference Images After Peel Test							Result
							There is no adhesive remnant observed after the adhesive peeling – PASSED
							There is no adhesive remnant observed after the adhesive peeling – PASSED