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ABSTRACT

As one of the critical parts of the wire bonding process, loop
formation will be discussed in this technical paper, focusing
on how the optimization of loop formation reduces the wire
proximity PPM for the MEMS MV8P device. Using
problem-solving methodology, the team was able to identify
and analyze the root causes of wire proximity rejects during
the wire bonding process through DMAIC approach.

1.0 INTRODUCTION

The MEMS product is one of the company's high-volume
production lines. The top device in this product line is the
MV8P. The ramp-up of this device is very challenging.
Department KPIs should be met by implementing all
necessary controls in the line to achieve the target yield.

Figure 1 shows the MEMS MV8P PPM trend of wire
proximity in the wire bonding process, averaging 350 PPM
from WWK2418 to WWK2431. The target is to reduce the
wire proximity PPM level to 174 PPM by the end of Q4 2024.

MVEP OVERALLWIRE PROXIMITY PPM FROM WWK2418 TO WWK2431

1017

PPM
g

428 .
Baseline

350 ppm

174 ppm

N \ Entitiement
35,9 98 ppm

——Overall Wire Proximty

3

N N3 '+ B o o A L] 5
A S A N A
AV AV 4 4V &Y & & & &

= wire to wire short

S o
Fy f} &
& &

—aggedwire

—-—vire to die short

——BASELINE ——ENTITLEMENT —SIX SIGMA GOAL

Fig. 1. MV8P Wire Proximity PPM trend WWK?2418 to WWK2431.

2.0 REVIEW OF RELATED WORK

“Not Applicable.”

+— Six sigma goal

3.0 METHODOLOGY
3.1 Define

Overall, wire proximity is the top defect contributor in
MEMS wire bond vyield. All reject codes related to wire
proximity, such as sagged wire, wire-to-wire short, and wire-
to-die short, are combined to determine the wire proximity
PPM as the primary metric as shown in Fig.2
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Fig. 2. MEMS Wire bond Top defect contributor from MAY 24 to JUL24

Analyzing the yield detractor, the top device contributor for
wire proximity rejects is the MV8P, as shown in Fig. 3.
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Based on line data, the top contributor to MV8P wire
proximity defects is wire-to-die short, followed by sagged
wire and wire-to-wire short, as shown in Fig. 4.
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Fig. 4. MV8P Wire Proximity contribution from MAY’24 to JUL’24

3.1.1 What are the Types of Wire Proximity at Wirebond?

Sagged Wire is typically a vertical deflection of the Wire.
This is rejected for wire gaps that come closer than 2 wire
diameters to the substrate, unprotected die area, or die edge
in the Z-axis.
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Fig. 5. Sagged Wire defect signature.

Wire-to-wire short is typically a lateral deflection of the
wire. This is rejected if gaps come closer than 2 wire
diameters to another wire.

Fig. 6. Wire-to-wire short defect signature.

Wire-to-die short occurs when the wire has already touched
the die surface, die edge.
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Fig. 7. Wire-to-die short defect signature.

3.2 Measure

Below Macro map shows the process of MEMS MV8P
device from Assembly to Test and Finish where Wirebond is
the focus of this project as shown in Fig.8

e

Fig. 8. MEMS MV8P Process Macro Map.

Based on the detailed process flow, the critical process steps
are material preparation, program/recipe loading, parameter
verification, machine setup using dummy units, and wire
bonding, as shown in Fig 9.
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Fig. 9. Wirebond detailed process map.

3.2.1 What is Wirebond Process?

Wire bonding is a process of interconnecting internal chip
circuitry using fine wires to the substrate or lead frame.
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Fig. 10 Wire bonding process flow
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3.2.2 ldentification of Potential Rootcause

Shown below is the fishbone diagram of wire proximity at
wirebond. The team identified 14 potential root causes, as
shown in Figure 12.
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Fig. 12. Fishbone diagram.

Using Cause and Effect diagram there are 6 X potential root
cause that need to be address as shown in Table 1.
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3.2 .3 Quick Wins

There are 5 activities that help address 5 potential causes and
contribute to the current wire proximity PPM performance,
as, shown in Fig. 13 -17.
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Fig. 13 Quick wins # 1.
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Critical X Finding/s Action Status
Die Placement Mis-placed Die Adjust 2% bond placement to compensate the misplaced die issue.  Done
encountered wire to die After adjustment, the gap between 2 bond to lead edge Is still WWK2428
short. sufficient.
Vs s
w-l1lr]!lllll-le-]-]u|
poyons BroRE | ses | s | s E:I}sni.ask.ms{m:‘ui]
AFTER 434 a3 »s 21 2 138 1 », ns s
@ [ 157 | 03 | | s ]
o BEFORE e
,g’ '\"‘g,\ AFTER ,_’,,la ot
i
Fig. 15 Quick wins # 3.
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Fig. 18 shows the wire proximity PPM trend after
implementation of the 5 Quick wins activities.

Quick Wins Implementation Result
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Fig. 18 Quick wins implementation result.

3.3 Analyze

Table 2 shows the validation plan for the remaining
potential root cause.

Table 2. validation plan for potential root cause.
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3.3.1 Statistical Testing of Reverse Motion Setting.

Fig. 20 shows the comparison of loop formation with three
reverse motion settings. At 3 mils reverse motion, there is a
small change in reverse payout, while at 2 mils reverse
motion, there is a noticeable change in reverse payout and
lower loop height compared to the current setting.

Current Setting
3.8 mils Reverse Motion

3 mils Reverse Motion

Loop
height

Fig. 20 comparison of loop formation with three reverse motion settings.
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Fig. 21 Statistical testing of three reverse motion setting.
3.3.2 Practical Conclusion:
At 95% confidence level, loop height of 2 mils reverse
motion is significantly lower than 3 mils and 3.8 mils reverse
motion. Thus, reject Null Hypothesis, as shown in Fig 21.
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Fig. 22 Statistical testing of robustness of loop formation.
3.3.4 Practical Conclusion:

At 95% confidence level, there is a significant difference in
wire proximity occurrence if the Reverse Motion is 3.8 mils
and if the Reverse Motion is 3 mils. Thus, reject Null
Hypothesis, as shown in Fig. 22.

3.3.5 Phase Conclusion.

e Loop height of 2 mils reverse motion is significantly
lower than 3 mils and 3.8 mils reverse motion.

e Using 3 mils reverse motion is statistically better
than using 3.8 mils reverse motion in terms of wire
proximity occurrence.
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3.4 Improved

Potential Problem Analysis was used to determine the risks
prior to implementing the best solution to ensure that the best
solutions will not incur new problems as shown in Table 3.

Table 3. Potential Problem Analysis.

Validated KPIV/|  Preventive |Responsibl  Potential Problem
Item Problem i Action a Analysis Counter Measure | Status
Decrease UPH » UPH time study
Wire Sweep at Mold » Verification at mold after
adjustment
Loop Parameter for Done
Wire . iAdjust reverse motion Qut of Specification and
1 Proximity Nomral Wire not ffrom 3.8 mils to 3 mils| ECadag Out of Control in loop height »  Monitor SPC data trend W26
robust
afteradjustment
Wire Proximity Detected at
Testand Finish * Monitor Test Performance
of 5x lead lots

3.4.1 Description of Preventive Action

The adjusted value was based on the KNS Iconn machine's
recommended parameter setting. The value of reverse motion
is based on 60% to 80% of the kink height value, as
recommended. If the value of reverse motion is too close to
the kink height value, it will cause the wire to be dragged in
the reverse motion direction, resulting in wire proximity

rejection, as shown in Fig 23.
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Fig. 23 Loop parameter Adjustment.
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3.4.2 Statistical Testing of Machine Variation after
Adjustment.
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Fig. 24 Statistical Test for Machine Variation.

3.4.3 Practical conclusion:

At 95% confidence level, there is a no significant difference
between 6x machine using 3 mils Reverse Maotion. Thus,
failed to reject Null Hypothesis, as shown in Fig. 24.

3.4.4 Validation of UHP after adjustment:

Table 4. shows Machine UPH after loop parameter
adjustment is 448.79 still meeting the declared UPH of 441.

Table 4. Machine UPH:
1 MV8P UPH Baseline from [E
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3.4.5 Validation of Loop Formation at MOLD after
Adjustment:

Table 5. shows no wire sweep seen after random X-ray
inspection at mold.

Table 5. X-ray image at mold:

STRIP # 1A STRIP # 1B | STRIP #1C i STRIP #1D STRIP # 1E
x‘,,..q..‘:: L " A:_, e © s .-

S pvalue |Deeision|

me‘

reject Ho|
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3.4.5 Validation of Loop height after Adjustment:

No occurrence of Out of Specification and out of Control for
MV8P after adjustment of Reverse Mation to 3 mils, as
shown in the Statistical Process Control data trend Fig. 25

——————————————— -

Fig. 25 Statistical Process Control data trend.
3.4.6 Monitoring the performance of lead lots during the
Test and Finish phase:

No Wire Proximity reject was detected in the 5x lead lots
based on their test performance, as shown in Table 6.

Table 6 lead lots performance at Test and Finish.

REVERSE MOTION IS 3 LOTQTY WIRE PROXIMITY REJECT AT WIRE PROXIMITY REJECT
MILS LOT ID WIREBOND PROCESS DETECTED AT TEST AND FINISH
784459YL02 27907 0 0

784459NPZX 39943 0 0
784459U701 28589 0 0
784459U92Z 40317 0 0
78445A3F02 28735 0 0

TOTAL 165491 0 0

4.0 RESULTS AND DISCUSSION

In WWK2504, the MV8P Wire Proximity is 30 PPM below
the Six Sigma goal of 174 PPM. The PPM was reduced from
an average of 350 PPM in WWK2418 — WWK2431 to an
average of 187 PPM in WWK2447 — WWK2504,
representing a 47% improvement, as shown in Fig 26.

Implementation Result
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Fig. 26 Implementation result.
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From being the top one defect contributor in Wirebond
Process Yield the Overall Wire Proximity drop down to the
top four defect contributor, as shown in Fig. 27.
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Fig. 27 Implementation result.

MV8P is still the top device contributor having the highest
volume but with decreased in PPM from 80 PPM in May’24
—Jul’24 to 29 PPM Nov’24 to Jan’25 or 64% improved, as
shown in Fig. 28.

(OVERALL MEMS WIRE PROXIMITY PPM PER DEVICE FROM MAY24T0 JUL24

(VERALL MEMS WIRE PROXINITY PPM PER DEVICE FROM NOV:24 TO JANZS

“

Fig. 28 Implementation result.

The IE Certified Annualized actual and forecasted cost
savings for this project, from December 2024 to November
2025, were calculated to be 4.22 KUSD for the MEMS MV8P
device.

Table 7. Annualized Cost Savings
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4.1 Team Learning:

By following the machine-recommended parameter settings
and capabilities, the team was able to reduce the occurrence
of wire proximity rejects.
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4.2 Control:

The team listed the needed documentation, such as program
saving to e-star and RMS, which were successfully updated
and saved, as shown in Table 8.

Table 8. Documentation.

Item Action Item Due Date | Responsible | Doc#/ Remarks
Rev
1 | Update Looping WWK2451 | Emman Cadag | E-STAR/ | DONE Implemented

parameter of MV8P RMS e, s
Save via uploading on -
e-Star / RMS (on KNS
ICONN Bonders)

5.0 CONCLUSION

In WWK2504 the MV8P Wire Proximity is 30 PPM below
six sigma goal of 174 PPM, PPM was reduced from average
of 350 PPM in WWK?2418 — WWK?2431 to average of 187
PPM WWK2447 — WWK2504 or 47% improvement. This
improvement also reduces the value-added activity of the
operator in visual inspection for the defect it produces.

6.0 RECOMMENDATIONS
Set Reverse Motion value of Normal Wire based on 60% to
80% of the kink height value. It is recommended to fan-out
these learnings to other MEMS devices that has normal wire.
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