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ABSTRACT 

 

Semiconductors and high-tech industries are characterized 

with high volatility, dynamics, and complex manufacturing 

and supply chain operations. Driven by consumer, cloud and 

client end-markets, the demands might change highly over 

time, which creates significant challenges on factory and 

capacity planning domains. By their strategic nature, the 

related decisions consider a longer, involve major investment 

decisions and incorporate long equipment delivery lead 

times, particularly when special processes are considered. 

 

In the paper, a novel capacity planning approach is presented 

that optimize the strategic, long-range capacity plans (LRP) 

in response to the following problems. First, the manual 

process takes 2 weeks to complete per cycle with only 3 

scenarios explored in an iterative manner, considering that 

there are more than 15 cycles of assessment within 5 months 

causing catch-up issues with the many iterations. This 

limitation deprives optimization and sensitivity analysis 

leading to a plan that may not be robust against parameter 

changes and disruptions. Second, the manual nature of the 

existing process using MS excel is prone to errors either in 

the data input, excel formula, and product model assignment. 

Third, the static straight forward calculation with zero 

capacity flexibility buffer will lead to a wrong investment 

strategy with high capital expenditure (CAPEX) and may 

even lead to a failure to close the required build volumes. 

 

The presented models leverage integer linear and nonlinear 

programming approaches, to identify the cost-optimal 

capacity investment plans, and furthermore, to identify the 

scenarios in engineering versus investment tradeoffs. 

 

With the new system, the analysis time was improved from 

14 days with only 3 scenarios to a single day but having 

multiple scenarios. It ensures the use of capital more 

efficiently, in a mathematically optimal way with scenario 

exploration and robust planning. Errors are also eliminated 

with the system calculation. Finally, the OR model-based 

system allows the strategic planning team to create a robust 

plan against price, volume, and capacity changes where 

available resources are maximized and capital is minimized. 

1.0 INTRODUCTION 

 

Semiconductors and high-tech industries are characterized by 

volatile demand, high variety of products and short product 

lifecycles coupled with complex manufacturing processes 

and special, high-cost equipment. These challenges require a 

combination of advanced forecasting and optimization 

techniques in long range factory capacity planning.  

 

Typically, long range planning is based on a 5 year horizon, 

requiring a broad range of external and internal factors to be 

considered. Volumes can fluctuate dramatically due to 

changes in technology, demand, and macroeconomic factors. 

Predicting future demand accurately becomes difficult, 

especially when planning several years ahead. Therefore, the 

decision makers need to deal with highly uncertain 

parameters, and variance of the key driving factors. 

 

The horizontal process segmentation in the semiconductor 

supply chain is intricate, involving multiple stages such as 

wafer fabrication, assembly, and testing. Coordinating 

capacity across these stages and ensuring alignment with 

market demand adds complexity. In a typical case, factories 

are dedicated to performing the major steps of the entire 

fabrication: as an example in the hard-disk drive (HDD) 

production, the overall process chain is broken down to media 

and substrate (disk), and head (reader/writer component) 

manufacturing, and dedicated sites perform the final product 

assembly. In head, both wafer manufacturing and backend 

assembly processes are highly complex, and therefore, are 

performed in separate and dedicated sites. 

 

Building new head manufacturing facilities, or expanding 

existing ones requires significant lead times, often spanning 

several years. Accurately forecasting demand far in advance 

to justify these investments is challenging. Besides, the 

related technology evolves rapidly, new products with 

increasing complexity are introduced often. Long-range 

capacity planning (LRP) must account for technology 

advancements and ensure that future capacity aligns with 

emerging requirements. This means that the technology and 

equipment should be flexible and adaptive, to support the 

major shifts over the evolution of product generations. 
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In the backend operations, high-precision processes have a 

varying degree of automation, as some processes are still 

human labor intensive. Considering both the automation and 

equipment, manufacturing sites require capital-intensive 

investments, resulting in high costs to build and operate. 

Making long-term capacity decisions involves assessing 

financial risks and ensuring sufficient return on investment. 

 

Another important factor is the stability of the process 

conditions that drives the unit capacity and process yield. 

Even though high-precision equipment is involved, and the 

conditions are under very strict control in cleanroom 

environments, tool and material modifications have a varying 

degree of product quality, especially in the ramping stage of 

the new product. Therefore, unit capacity and yields can vary 

due to process variations, equipment performance, and other 

factors. Ensuring adequate capacity while minimizing costs 

requires managing the variability of these parameters. 

 

 

2.0 REVIEW OF RELATED WORK 

 

Factory capacity planning is a strategic decision with a long-

range, typically multi-years horizon, due to the lead times of 

related adjustments. Martinez-Costa et al. [1] revise various 

mathematical programming model to solve typical, long-

range site capacity planning problems. They also specify the 

core problem as it follows. Single-site strategic capacity 

planning consists in determining the capacity expansion size 

of an existing plant in each period. Expansion alternatives 

include equipment acquisition from equipment vendors, rent 

and transfer by outsourcing. If the plant needs non-redundant, 

independent multiple resources, it is sometimes possible to 

identify one bottleneck resource. If this resource is expanded, 

all the capacity of the plan is too, provided that the others 

increase in the corresponding amount and the problem is 

equivalent to a single resource type. In the same way, if a 

plant produces multiple products but each product has its 

dedicated resources, they are independent because each type 

of resource serves the demand of a different product, and the 

capacity problem consists in determining the number of units 

of capacity expansion of each resource. 

 

The state-of-the-art factory capacity planning techniques in 

the high-tech and semiconductors industry typically apply 

integer linear programming techniques, to address equipment 

conversion, investment timing and capacity ramping 

decision. As Rastogi et al. [2] highlight, the complexity of 

global capacity planning combined with the large capital 

expenditures to increase factory capacity makes it important 

to incorporate optimization methodologies for cost reduction 

and long-term planning. They present a two-stage stochastic 

integer-programming formulation to model a semiconductor 

supply network. The model makes strategic capacity 

decisions, (i.e., build factories or outsource) while accounting 

for the uncertainties in demand for multiple products. Model 

was also used to analyze how variability in demand affects 

make/buy decisions and how correlation between demands of 

different products affects these strategic decisions. 

 

Barahona et al. [3] investigates the impact of demand 

uncertainty on long-range planning decisions in 

semiconductors manufacturing. They present a stochastic 

programming approach to capacity planning, a mixed-integer 

program in which expected value of the unmet demand is 

minimized subject to capacity and budget constraints. This is 

a difficult two-stage stochastic mixed-integer program which 

cannot be solved to optimality in a reasonable amount of 

time. Therefore, they propose a heuristic that can produce 

near-optimal solutions and strengthens the linear 

programming relaxation of the formulation with cutting 

planes and performs limited enumeration. 

 

Manufacturing equipment should be flexible and convertible 

to adopt to the changes in the product portfolio. Conversion 

kits provide the opportunity to qualify the resources for new 

products, without replacing the core manufacturing units. In 

the capacity planning, this involves investigating the tradeoff 

relation between new equipment investment and upgrading 

the existing ones. The former provides not only enhanced 

equipment capability (e.g. precision), but also volume 

scaling, however, the associated costs are significantly higher 

than kit-based upgrading. The related planning problem is 

analyzed by Zhang et al [4]. They proposed a two-level 

hierarchical planning methodology to generate a complete 

capacity planning solution using mixed-integer linear 

programming. It covers mid-range monthly planning and 

automated capacity allocation system covers short-range 

weekly planning. These systems are integrated to generate 

optimal capacity plans considering kit components. 

 

A hybrid capacity planning method is proposed by Leu and 

Liu to solve combined capacity planning and volume 

allocation problems in semiconductors supply chains. They 

used linear programming to get a baseline solution, and then 

use discrete-event simulation to approximate a detailed 

solution for the production capacity planning of supply chain. 

Based on the proposed decomposition, the method is scalable, 

however, it is more suitable for mid-range capacity planning 

rather than strategic site capacity planning [5]. 

 

 

3.0 METHODOLOGY 

 

In the coming section, the problem of a single-site strategic 

capacity planning is specified, considering alternative 

resources with different cost and precision attributes. Then 

the generic mathematical models is formulated as a non-

linear integer programming model, with adjustable 

equipment capabilities that introduce decision tradeoffs. 
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1.1 Single-site Long Range Capacity Planning Problem with 

Alternative Resources 

 

In the core investigated problem, multi-period capacity 

planning divided into quarters is considered with a single 

factory site. The volume forecast with multiple products is 

assumed to be known over the horizon, and demand 

uncertainty is disregarded. However, the experimental cases 

will assume alternative demand scenarios and therefore, 

sensitivity analysis will be proposed. Furthermore, the 

product roadmap is also specified, as well as manufacturing 

technology requirements, the type of the resources to be used, 

and the capacity required from each resource type. The 

routing of the products is not considered, which means that 

the capacity calculations disregard the sequence of 

operations, and only the aggregate capacity requirements are 

considered per equipment type and product. 

 

The products are made by several different operations, each 

requiring specific equipment. The equipment capabilities are 

specified by the operations they can perform, and the cost 

equipment unit. Another important attribute is the process 

yield that specifies the quality rate of executed operations. 

These parameters are in a tradeoff setting, i.e., a higher spec 

equipment is associated with higher purchase cost and vice 

versa. Furthermore, capacity in the form of processing time 

is also an attribute of the equipment, and it determines the 

time associated with processing a unit of products. 

 

A brownfield planning scenario is investigated with a 

manufacturing site that operates already in the beginning of 

the planning horizon. As initial parameters, the existing set of 

equipment is already known, including the products and 

capacity requirements. The planning decisions determine the 

equipment to be purchased over the horizon, specifying their 

type, the time of purchase, set-up leadtime, qualification and 

tool release to line. Additionally, equipment upgrades 

leveraging conversion kits is also possible, associated with 

upgrade costs. Tool end-of-life (EOL) and productivity 

improvement projects are also considered in the planning to 

sustain and improve the current plant capacity. 

 

The principal planning rule is that the supply should always 

match the demand, i.e., the available capacity of the factory 

should be sufficient enought to meet (or exceed) the demand 

at any time. In addition, the equipment capabilities must also 

meet the technical requirements of the product portfolio. 

Important planning aspect is the availability of alternative 

equipment, i.e., the yield and unit capacity of equipment can 

be optimized to meet the demand, and therefore, they are 

considered to be variables in the planning model.  

 

Most importantly, the overall objective is to minimize the 

total investment (capital) required by the site over time. 

 

1.2 Mathematical Model of the Planning Problem 

 

The base long range capacity planning problem is formalized 

as an integer linear programming model as it follows. In the 

coming sections, the nonlinear extension of the problem will 

also be proposed, in order to capture the adjustable equipment 

parameters, such as the unit capacity or yield. 

  

In the model the set of product groups are denoted by i, 

including the products j. The process steps of making the 

products are denoted by k, and the time horizon is divided 

into equal length periods t. The manufacturing resources are 

denoted by l. The major parameters and decision variables are 

the volume X of products that are processed in a certain period 

by a set of equipment per operation. The tool capacities are 

quantified by Q and R, continuous and integer measures, 

respectively. The latter is used in case of special tool capacity 

requirements where rounding is necessary for the capacity 

calculations. Considering a brownfield planning scenario, 

there is a set of available tools A, while the decision variable 

N denotes the investments that are made over the horizon. 

 

 
 

The objective function (1) minimizes the total investments, 

equivalent to the unit costs multiplied with the quantity of 

tools purchased. The first constraints state that the set of 

available tools at any period is the sum of available and 

additionally purchased equipment (2). The demand must 

fulfilled, i.e., undersupply is not allowed as provided in (3). 

The tool capacity rounding expressions are provided in (4) 

and (5). The tool capacity requirement for existing, standard 

and special tools are provided by (6)-(7), (8)-(9) and (10)-

(11), respectively.  
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1.3 Solution of the LRP Problem 

 

The base problem, i.e., the LRP model was formulated as a 

mixed-integer linear program (MILP). Depending on the 

problem size, this can be solved with general optimization 

techniques, e.g., the branch-and-bound algorithm. However, 

in several cases, the solution is somewhat straightforward, 

especially if volume reallocation across time periods is not 

allowed., i.e, it cannot be flexibly balanced with the 

capacities. This assumption holds in the present model, as 

stated in constraint (3). Therefore, in order to identify the base 

solution of the overall planning problem, a non-linear 

extension of the original model is proposed. 

 

In this extended formulation, it is assumed that the unit 

capacity and yield parameters are variable, and hence they 

can be adjusted within ranges, and these adjustment are 

associated with engineering costs. As both parameters are in 

the denominator of e.g. constraint (6), the transformed model 

will be highly non-linear, and branch and bound techniques 

cannot be applied. The numerical complexity will 

significantly increase as the integrity constraints and binary 

variables remain unchanged. 

 

 
 
Fig. 1.  Workflow of the overall planning problem, with the base parameters 

settings and the nonlinear extension of the problem, where scenario 

exploration (red) is applied to find the best input parameter (changed to 
decision variables) combinations. 

 

Two alternative approaches are proposed to solve the 

extended model. If the adjustable parameters take discrete 

values within the specified engineering ranges, then a full 

factorial experiment plan can be defined to solve the  

 

 

optimization model for all parameter combinations within the 

ranges. A more sophisticated way of solving the problem is 

defining a custom heuristics for the scenario iteration, by 

implementing a search algorithm that explores the impact of 

parameter combinations on the linear relaxation of the 

original problem, which provides good guidance on setting 

the parameters of the original problem instance. 

 

As an example for the latter, in each iteration, a fix set of key 

input variables (KIVs) is considered, however, these 

parameters are adjusted from scenario to scenario. For every 

scenario run, the model will always produce a POR (Plan-of-

Record) case, a BEST case and a WORST case, where all 

cases meet the demand constraints. 

 

The POR results is based on the original given KIV, and will 

provide the total capacity and capital required for investment. 

Alternatively, the BEST case results come after optimizing 

the yield, unit capacity and machine cost relative to the 

defined % improvement from the POR. The results will show 

the optimum capacity with a much lower investment 

required. This will help the engineering and procurement 

teams identify the critical processes and equipment as focus 

areas for improvement, and for purchase. Contrary, the 

WORST case will also be provided by the model which will 

show the opposite impact of the BEST case showing a higher 

investment requirement.  

 

 
 

Having the two alternative approaches on top of the original 

POR case will allow the user and the model to understand the 

range at which the next set of key input variables (unit 

capacity, unit cost, yield, utilization, etc) can be adjusted. 

 

Finally, the raw data produced by the model associated with 

the solutions provided by the optimizer is injected to a 

systems database (Microsoft SQL server). Stored procedures 

(referred as Scripts) are created in the database using SQL 

queries which generates the aggregated data format required 

by the users. These aggregated data are transferred to the web 

application and plotted into visualization (charts and 

summary tables). The web-based application was designed to 

visually explore and navigate the results. 

 

  

Yield -% +% 

Cap Util -% +% 

Unit Cost -% +% 

Unit Cap -% +% 

Inputs & Constraints Scenario 
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4.0 RESULTS AND DISCUSSION 

 

The overall planning workflow and related application has 

been implemented in a web-based application (see Figure 2), 

leveraging full-stack architecture. All planning parameters, 

scenario data etc. are stored in SQL databases, populated by 

users via a web application interface. The planning model has 

been implemented in FICO Xpress (MILP model 

implementation) and Python language was used for 

implementing the neighborhood search iterator. 

 

 

 
Fig. 2. The interactive Web-based application.  

 

 

In a numerical experiment illustrated in Figure 3, a base 

volume forecast is taken, and the long-range capacity plan is 

calculated. Then, in a subsequent period a revision of the 

forecast is provided, anticipating significant volume changes 

in future quarters. Hence, the LRP experimentation was 

performed on a rolling horizon bases, and the numerical 

results between manual and optimization-based calculations 

were compared. During the experimentation, the non-linear 

extension of the original model was used, i.e., adjustable 

yield and unit capacity parameters for sensitivity analysis 

were also considered to identify the best equipment 

capabilities, in balance with the volume scenarios. 

 

 

 
 
Fig. 3.  Test planning scenarios with forecast revisions: Build volume plan 

significantly differs for the three (3) different forecasts showing the 

variability while growing, that needs to be address by the LRP model with 

proper capacity adjustment, avoiding excess capital expenditure. 

 

In the numerical experiments, a full-site optimization 

scenario was considered, with a planning horizon of 5+ years, 

a large set of processes (150+) and portfolio of products 

(30+). The range of adjustable unit capacity and yield were 

provided as input, in the percentage of the original values. 

Taken all the input parameters, a series of numerical 

experiments were conducted, and the results were compared 

to those obtained with standard calculation methods. 

 

Comparing the forecast-to-forecast revisions, the major 

business benefit of using the optimization model is aiding top 

management in making the right decisions to select the best 

strategy for the business which helps to avoid unnecessary 

investments by properly balancing the equipment parameters 

and capacity with the volume demand. Buying enough tools 

and achieve optimum capacity to support the volume with 

10% fluctuation is strategic as compared to buying excess 

tools that later-on will require vendor negotiation for delivery 

push-out. With this, the optimization model helped to identify 

the best tradeoff settings among the key input parameters 

eventually contributing to several million annual capital 

expenditure avoidance over the planning horizon, comparing 

the solutions obtained by the manual planning process versus 

those provided by the optimization model. 

 

Another benefit of the interactive web-based application is 

the ease of data exploration and navigation thru visualization. 

As a factory with hundreds of process steps in different 

production areas to make the finish product, it is important 

for planners to identify the bottleneck areas and processes 

that needs focus in case volume or demand suddenly increase.  

 

The system capability in the web application includes the 

capacity drilldown function wherein users can see the overall 

plant-wide demand vs capacity as shown in Figure. 4, and can 

further be drilled down to the desired next level detail. 

 

 
Fig. 4. Capacity drilldown showing total demand vs capacity. 
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The visualization will give the strategic planners a much 

better view and understanding on which specific production 

area is the gating capacity, and which specific processes are 

identified as the top detractors that needs focus and 

improvement as shown in Figure 5. 

 

 
Fig. 5. Top Processes per Area to help planners identify bottleneck processes. 

  

If there is a need to zoom in to a specific process, particularly 

those that require investments, the demand vs capacity per 

process step is also available as shown in Figure 6.  

 

 

 
Fig. 6. Demand vs capacity for a specific process step  

 

As product life cycle is fast in a semiconductor and high 

technology company, demand vs capacity analysis for new 

products is also presented in the visualization. To understand 

which specific tool and parameter is gating the capacity, the 

parameter level detail is also available per process and per 

specific tool.  

 

To have the confidence in using the system, it is important to 

verify the results from the model. A validation was conducted 

for several months comparing the output of the manual 

calculation using excel spreadsheets and the system results 

from the model. As shown in Figure 7, both results show a 

gap delta of less than 1% per area confirming the viability of 

the model to replace the manual calculation process. 

 
Fig. 7. Comparison of sample run using manual and system calculation.  

 

 

5.0 CONCLUSION 

 

In the paper, a long-range factory capacity planning approach 

was proposed with the base linear programming model, and 

its non-linear extension where equipment parameters are 

adjustable. Leveraging these parameter adjustments, the user 

and model can identify the optimal combination of capacity 

and equipment capability settings on a rolling horizon. To 

solve the nonlinear extension of the original problem, a 

neighborhood search iterator can be applied, which explores 

the impact of unit capacity and yield changes on the linear 

relaxation of the original problem and provides guidance to 

set parameters for the original MILP model. 

 

A series of numerical experiments were conducted to assess 

the business benefits that can be achieved by the 

optimization. Hence, the optimizer was expected to detect the 

potential investment savings, to avoid capital spending in 

surplus capacities. The experimental results show potential in 

applying the proposed model in full scale real factory 

planning situations. 

 

In addition, the web-based interactive user interface provides 

the ease of data exploration and navigation using the capacity 

drilldown function which helps planners to analyze demand 

and capacity results down to the parameter level detail. This 

allows planners and process owners to identify processes 

needing capacity improvements and can focus investments on 

new products and new technologies.  

 

 

6.0 RECOMMENDATIONS  

 

The key input variables (KIVs) are currently being uploaded 

to the system using an excel file and converted to the 

database. Thus parameter scenario adjustments are conducted 

manually based on the proposal of the model. It is 

recommended in the future to extract the KIVs directly online 

linking the system to data sources for volume, tool 

performance, and oracle (procurement cost), etc.  
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It is also recommended to complete ongoing enhancements 

on the existing beta model to not only cover the planning 

needs related to tool capacity and new technology, but also 

productivity and end-of-life tool sustenance, capital release 

and expenditure planning, depreciation, and capex forecast-

to-forecast sensitivity gap analysis.  

 

Currently, the authors are testing the model in other factories 

(China, Malaysia, Thailand) where the planning logic and 

rules are similar, and extended the model to multi-site 

planning scenarios. It is recommended to complete this 

project harmonization across the different sites to explore the 

potential in synergistic cross-site capacity balancing. 
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