34t" ASEMEP National Technical Symposium

FACTORY CAPACITY OPTIMIZATION WITH INTEGER LINEAR AND
NON-LINEAR PROGRAMMING APPROACHES

Fernando P. Elizaga Jr.
Jonathan S. Legarde
Snehalata More

Advanced Analytics Office, Head Backend Operations
Western Digital Corporation (Philippines), 109 Technology Ave, Laguna Technopark, Bifian, Laguna, PH

ABSTRACT

Semiconductors and high-tech industries are characterized
with high volatility, dynamics, and complex manufacturing
and supply chain operations. Driven by consumer, cloud and
client end-markets, the demands might change highly over
time, which creates significant challenges on factory and
capacity planning domains. By their strategic nature, the
related decisions consider a longer, involve major investment
decisions and incorporate long equipment delivery lead
times, particularly when special processes are considered.

In the paper, a novel capacity planning approach is presented
that optimize the strategic, long-range capacity plans (LRP)
in response to the following problems. First, the manual
process takes 2 weeks to complete per cycle with only 3
scenarios explored in an iterative manner, considering that
there are more than 15 cycles of assessment within 5 months
causing catch-up issues with the many iterations. This
limitation deprives optimization and sensitivity analysis
leading to a plan that may not be robust against parameter
changes and disruptions. Second, the manual nature of the
existing process using MS excel is prone to errors either in
the data input, excel formula, and product model assignment.
Third, the static straight forward calculation with zero
capacity flexibility buffer will lead to a wrong investment
strategy with high capital expenditure (CAPEX) and may
even lead to a failure to close the required build volumes.

The presented models leverage integer linear and nonlinear
programming approaches, to identify the cost-optimal
capacity investment plans, and furthermore, to identify the
scenarios in engineering versus investment tradeoffs.

With the new system, the analysis time was improved from
14 days with only 3 scenarios to a single day but having
multiple scenarios. It ensures the use of capital more
efficiently, in a mathematically optimal way with scenario
exploration and robust planning. Errors are also eliminated
with the system calculation. Finally, the OR model-based
system allows the strategic planning team to create a robust
plan against price, volume, and capacity changes where
available resources are maximized and capital is minimized.

1.0 INTRODUCTION

Semiconductors and high-tech industries are characterized by
volatile demand, high variety of products and short product
lifecycles coupled with complex manufacturing processes
and special, high-cost equipment. These challenges require a
combination of advanced forecasting and optimization
techniques in long range factory capacity planning.

Typically, long range planning is based on a 5 year horizon,
requiring a broad range of external and internal factors to be
considered. Volumes can fluctuate dramatically due to
changes in technology, demand, and macroeconomic factors.
Predicting future demand accurately becomes difficult,
especially when planning several years ahead. Therefore, the
decision makers need to deal with highly uncertain
parameters, and variance of the key driving factors.

The horizontal process segmentation in the semiconductor
supply chain is intricate, involving multiple stages such as
wafer fabrication, assembly, and testing. Coordinating
capacity across these stages and ensuring alignment with
market demand adds complexity. In a typical case, factories
are dedicated to performing the major steps of the entire
fabrication: as an example in the hard-disk drive (HDD)
production, the overall process chain is broken down to media
and substrate (disk), and head (reader/writer component)
manufacturing, and dedicated sites perform the final product
assembly. In head, both wafer manufacturing and backend
assembly processes are highly complex, and therefore, are
performed in separate and dedicated sites.

Building new head manufacturing facilities, or expanding
existing ones requires significant lead times, often spanning
several years. Accurately forecasting demand far in advance
to justify these investments is challenging. Besides, the
related technology evolves rapidly, new products with
increasing complexity are introduced often. Long-range
capacity planning (LRP) must account for technology
advancements and ensure that future capacity aligns with
emerging requirements. This means that the technology and
equipment should be flexible and adaptive, to support the
major shifts over the evolution of product generations.
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In the backend operations, high-precision processes have a
varying degree of automation, as some processes are still
human labor intensive. Considering both the automation and
equipment, manufacturing sites require capital-intensive
investments, resulting in high costs to build and operate.
Making long-term capacity decisions involves assessing
financial risks and ensuring sufficient return on investment.

Another important factor is the stability of the process
conditions that drives the unit capacity and process yield.
Even though high-precision equipment is involved, and the
conditions are under very strict control in cleanroom
environments, tool and material modifications have a varying
degree of product quality, especially in the ramping stage of
the new product. Therefore, unit capacity and yields can vary
due to process variations, equipment performance, and other
factors. Ensuring adequate capacity while minimizing costs
requires managing the variability of these parameters.

2.0 REVIEW OF RELATED WORK

Factory capacity planning is a strategic decision with a long-
range, typically multi-years horizon, due to the lead times of
related adjustments. Martinez-Costa et al. [1] revise various
mathematical programming model to solve typical, long-
range site capacity planning problems. They also specify the
core problem as it follows. Single-site strategic capacity
planning consists in determining the capacity expansion size
of an existing plant in each period. Expansion alternatives
include equipment acquisition from equipment vendors, rent
and transfer by outsourcing. If the plant needs non-redundant,
independent multiple resources, it is sometimes possible to
identify one bottleneck resource. If this resource is expanded,
all the capacity of the plan is too, provided that the others
increase in the corresponding amount and the problem is
equivalent to a single resource type. In the same way, if a
plant produces multiple products but each product has its
dedicated resources, they are independent because each type
of resource serves the demand of a different product, and the
capacity problem consists in determining the number of units
of capacity expansion of each resource.

The state-of-the-art factory capacity planning techniques in
the high-tech and semiconductors industry typically apply
integer linear programming techniques, to address equipment
conversion, investment timing and capacity ramping
decision. As Rastogi et al. [2] highlight, the complexity of
global capacity planning combined with the large capital
expenditures to increase factory capacity makes it important
to incorporate optimization methodologies for cost reduction
and long-term planning. They present a two-stage stochastic
integer-programming formulation to model a semiconductor
supply network. The model makes strategic capacity
decisions, (i.e., build factories or outsource) while accounting

for the uncertainties in demand for multiple products. Model
was also used to analyze how variability in demand affects
make/buy decisions and how correlation between demands of
different products affects these strategic decisions.

Barahona et al. [3] investigates the impact of demand
uncertainty on long-range planning decisions in
semiconductors manufacturing. They present a stochastic
programming approach to capacity planning, a mixed-integer
program in which expected value of the unmet demand is
minimized subject to capacity and budget constraints. This is
a difficult two-stage stochastic mixed-integer program which
cannot be solved to optimality in a reasonable amount of
time. Therefore, they propose a heuristic that can produce
near-optimal  solutions and strengthens the linear
programming relaxation of the formulation with cutting
planes and performs limited enumeration.

Manufacturing equipment should be flexible and convertible
to adopt to the changes in the product portfolio. Conversion
kits provide the opportunity to qualify the resources for new
products, without replacing the core manufacturing units. In
the capacity planning, this involves investigating the tradeoff
relation between new equipment investment and upgrading
the existing ones. The former provides not only enhanced
equipment capability (e.g. precision), but also volume
scaling, however, the associated costs are significantly higher
than Kit-based upgrading. The related planning problem is
analyzed by Zhang et al [4]. They proposed a two-level
hierarchical planning methodology to generate a complete
capacity planning solution using mixed-integer linear
programming. It covers mid-range monthly planning and
automated capacity allocation system covers short-range
weekly planning. These systems are integrated to generate
optimal capacity plans considering kit components.

A hybrid capacity planning method is proposed by Leu and
Liu to solve combined capacity planning and volume
allocation problems in semiconductors supply chains. They
used linear programming to get a baseline solution, and then
use discrete-event simulation to approximate a detailed
solution for the production capacity planning of supply chain.
Based on the proposed decomposition, the method is scalable,
however, it is more suitable for mid-range capacity planning
rather than strategic site capacity planning [5].

3.0 METHODOLOGY

In the coming section, the problem of a single-site strategic
capacity planning is specified, considering alternative
resources with different cost and precision attributes. Then
the generic mathematical models is formulated as a non-
linear integer programming model, with adjustable
equipment capabilities that introduce decision tradeoffs.
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1.1 Single-site Long Range Capacity Planning Problem with

1.2 Mathematical Model of the Planning Problem

Alternative Resources

In the core investigated problem, multi-period capacity
planning divided into quarters is considered with a single
factory site. The volume forecast with multiple products is
assumed to be known over the horizon, and demand
uncertainty is disregarded. However, the experimental cases
will assume alternative demand scenarios and therefore,
sensitivity analysis will be proposed. Furthermore, the
product roadmap is also specified, as well as manufacturing
technology requirements, the type of the resources to be used,
and the capacity required from each resource type. The
routing of the products is not considered, which means that
the capacity calculations disregard the sequence of
operations, and only the aggregate capacity requirements are
considered per equipment type and product.

The products are made by several different operations, each
requiring specific equipment. The equipment capabilities are
specified by the operations they can perform, and the cost
equipment unit. Another important attribute is the process
yield that specifies the quality rate of executed operations.
These parameters are in a tradeoff setting, i.e., a higher spec
equipment is associated with higher purchase cost and vice
versa. Furthermore, capacity in the form of processing time
is also an attribute of the equipment, and it determines the
time associated with processing a unit of products.

A brownfield planning scenario is investigated with a
manufacturing site that operates already in the beginning of
the planning horizon. As initial parameters, the existing set of
equipment is already known, including the products and
capacity requirements. The planning decisions determine the
equipment to be purchased over the horizon, specifying their
type, the time of purchase, set-up leadtime, qualification and
tool release to line. Additionally, equipment upgrades
leveraging conversion kits is also possible, associated with
upgrade costs. Tool end-of-life (EOL) and productivity
improvement projects are also considered in the planning to
sustain and improve the current plant capacity.

The principal planning rule is that the supply should always
match the demand, i.e., the available capacity of the factory
should be sufficient enought to meet (or exceed) the demand
at any time. In addition, the equipment capabilities must also
meet the technical requirements of the product portfolio.
Important planning aspect is the availability of alternative
equipment, i.e., the yield and unit capacity of equipment can
be optimized to meet the demand, and therefore, they are
considered to be variables in the planning model.

Most importantly, the overall objective is to minimize the
total investment (capital) required by the site over time.

The base long range capacity planning problem is formalized
as an integer linear programming model as it follows. In the
coming sections, the nonlinear extension of the problem will
also be proposed, in order to capture the adjustable equipment
parameters, such as the unit capacity or yield.

In the model the set of product groups are denoted by i,
including the products j. The process steps of making the
products are denoted by k, and the time horizon is divided
into equal length periods t. The manufacturing resources are
denoted by I. The major parameters and decision variables are
the volume X of products that are processed in a certain period
by a set of equipment per operation. The tool capacities are
quantified by Q and R, continuous and integer measures,
respectively. The latter is used in case of special tool capacity
requirements where rounding is necessary for the capacity
calculations. Considering a brownfield planning scenario,
there is a set of available tools A, while the decision variable
N denotes the investments that are made over the horizon.
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The objective function (1) minimizes the total investments,
equivalent to the unit costs multiplied with the quantity of
tools purchased. The first constraints state that the set of
available tools at any period is the sum of available and
additionally purchased equipment (2). The demand must
fulfilled, i.e., undersupply is not allowed as provided in (3).
The tool capacity rounding expressions are provided in (4)
and (5). The tool capacity requirement for existing, standard
and special tools are provided by (6)-(7), (8)-(9) and (10)-
(11), respectively.
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1.3 Solution of the LRP Problem

The base problem, i.e., the LRP model was formulated as a
mixed-integer linear program (MILP). Depending on the
problem size, this can be solved with general optimization
techniques, e.g., the branch-and-bound algorithm. However,
in several cases, the solution is somewhat straightforward,
especially if volume reallocation across time periods is not
allowed., i.e, it cannot be flexibly balanced with the
capacities. This assumption holds in the present model, as
stated in constraint (3). Therefore, in order to identify the base
solution of the overall planning problem, a non-linear
extension of the original model is proposed.

In this extended formulation, it is assumed that the unit
capacity and yield parameters are variable, and hence they
can be adjusted within ranges, and these adjustment are
associated with engineering costs. As both parameters are in
the denominator of e.g. constraint (6), the transformed model
will be highly non-linear, and branch and bound techniques
cannot be applied. The numerical complexity will
significantly increase as the integrity constraints and binary
variables remain unchanged.

4

LRP optimizer DD[IH

Parameter set generator

Valid set of planning
parameters

Optimal
scenario
solution

lterative scenario Evaluate results
exploration engine

Scenario optimizer

e

Fig. 1. Workflow of the overall planning problem, with the base parameters
settings and the nonlinear extension of the problem, where scenario
exploration (red) is applied to find the best input parameter (changed to
decision variables) combinations.

Two alternative approaches are proposed to solve the
extended model. If the adjustable parameters take discrete
values within the specified engineering ranges, then a full
factorial experiment plan can be defined to solve the

optimization model for all parameter combinations within the
ranges. A more sophisticated way of solving the problem is
defining a custom heuristics for the scenario iteration, by
implementing a search algorithm that explores the impact of
parameter combinations on the linear relaxation of the
original problem, which provides good guidance on setting
the parameters of the original problem instance.

As an example for the latter, in each iteration, a fix set of key
input variables (KIVs) is considered, however, these
parameters are adjusted from scenario to scenario. For every
scenario run, the model will always produce a POR (Plan-of-
Record) case, a BEST case and a WORST case, where all
cases meet the demand constraints.

The POR results is based on the original given KIV, and will
provide the total capacity and capital required for investment.
Alternatively, the BEST case results come after optimizing
the yield, unit capacity and machine cost relative to the
defined % improvement from the POR. The results will show
the optimum capacity with a much lower investment
required. This will help the engineering and procurement
teams identify the critical processes and equipment as focus
areas for improvement, and for purchase. Contrary, the
WORST case will also be provided by the model which will
show the opposite impact of the BEST case showing a higher
investment requirement.

Inputs & Constraints Scenario

% +% Unit Cap
-% _&j_‘_ +%  Unit Cost
-% . +% Cap Util

-% . +% Yield

Having the two alternative approaches on top of the original
POR case will allow the user and the model to understand the
range at which the next set of key input variables (unit
capacity, unit cost, yield, utilization, etc) can be adjusted.

Finally, the raw data produced by the model associated with
the solutions provided by the optimizer is injected to a
systems database (Microsoft SQL server). Stored procedures
(referred as Scripts) are created in the database using SQL
queries which generates the aggregated data format required
by the users. These aggregated data are transferred to the web
application and plotted into visualization (charts and
summary tables). The web-based application was designed to
visually explore and navigate the results.
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4.0 RESULTS AND DISCUSSION

The overall planning workflow and related application has
been implemented in a web-based application (see Figure 2),
leveraging full-stack architecture. All planning parameters,
scenario data etc. are stored in SQL databases, populated by
users via a web application interface. The planning model has
been implemented in FICO Xpress (MILP model
implementation) and Python language was used for

implementing the neighborhood search iterator.

Volume (M) Capacity Optimization Summary

apecity — speta
10351 M 10398 M 503M

Fig. 2. The interactive Web-based application.

In a numerical experiment illustrated in Figure 3, a base
volume forecast is taken, and the long-range capacity plan is
calculated. Then, in a subsequent period a revision of the
forecast is provided, anticipating significant volume changes
in future quarters. Hence, the LRP experimentation was
performed on a rolling horizon bases, and the numerical
results between manual and optimization-based calculations
were compared. During the experimentation, the non-linear
extension of the original model was used, i.e., adjustable
yield and unit capacity parameters for sensitivity analysis
were also considered to identify the best equipment
capabilities, in balance with the volume scenarios.

Forecast 1

Forecast 2

Forecast 3

Build Volume

FY22 FY23 FY24 FY25 FY26 FY27

Fig. 3. Test planning scenarios with forecast revisions: Build volume plan
significantly differs for the three (3) different forecasts showing the
variability while growing, that needs to be address by the LRP model with
proper capacity adjustment, avoiding excess capital expenditure.

In the numerical experiments, a full-site optimization
scenario was considered, with a planning horizon of 5+ years,
a large set of processes (150+) and portfolio of products
(30+). The range of adjustable unit capacity and yield were
provided as input, in the percentage of the original values.
Taken all the input parameters, a series of numerical
experiments were conducted, and the results were compared
to those obtained with standard calculation methods.

Comparing the forecast-to-forecast revisions, the major
business benefit of using the optimization model is aiding top
management in making the right decisions to select the best
strategy for the business which helps to avoid unnecessary
investments by properly balancing the equipment parameters
and capacity with the volume demand. Buying enough tools
and achieve optimum capacity to support the volume with
10% fluctuation is strategic as compared to buying excess
tools that later-on will require vendor negotiation for delivery
push-out. With this, the optimization model helped to identify
the best tradeoff settings among the key input parameters
eventually contributing to several million annual capital
expenditure avoidance over the planning horizon, comparing
the solutions obtained by the manual planning process versus
those provided by the optimization model.

Another benefit of the interactive web-based application is
the ease of data exploration and navigation thru visualization.
As a factory with hundreds of process steps in different
production areas to make the finish product, it is important
for planners to identify the bottleneck areas and processes
that needs focus in case volume or demand suddenly increase.

The system capability in the web application includes the
capacity drilldown function wherein users can see the overall
plant-wide demand vs capacity as shown in Figure. 4, and can
further be drilled down to the desired next level detail.

Demand/Capaxity

— o
| I I I I

BC I

301

Fig. 4. Capacity drilldown showing total demand vs capacity.
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The visualization will give the strategic planners a much
better view and understanding on which specific production
area is the gating capacity, and which specific processes are
identified as the top detractors that needs focus and
improvement as shown in Figure 5.

IE Capacity Optimization .7 v

Top Processes

PROCESSES
Fig. 5. Top Processes per Area to help planners identify bottleneck processes.

If there is a need to zoom in to a specific process, particularly
those that require investments, the demand vs capacity per
process step is also available as shown in Figure 6.

IE Capacity Optimization . v

Per Process

PROCESS

Fig. 6. Demand vs capacity for a specific process step

L S—————————

As product life cycle is fast in a semiconductor and high
technology company, demand vs capacity analysis for new
products is also presented in the visualization. To understand
which specific tool and parameter is gating the capacity, the
parameter level detail is also available per process and per
specific tool.

To have the confidence in using the system, it is important to
verify the results from the model. A validation was conducted
for several months comparing the output of the manual
calculation using excel spreadsheets and the system results
from the model. As shown in Figure 7, both results show a
gap delta of less than 1% per area confirming the viability of
the model to replace the manual calculation process.

b [Cz:"pai:::-:ldﬂ (c::;.t:l-nv;s) Deral(R {c’::::?t;] (g'::::y) tMDI:nu;s]
AREA1 3.45 345 0 108.9 1003 04(0.3%)
AREA 2 0.04 0,04 0 1108 1106 0.2 (0.2%)
AREA3 0.66 0.66 0 8 98 0
TOTAL 415 415 0

Fig. 7. Comparison of sample run using manual and system calculation.

5.0 CONCLUSION

In the paper, a long-range factory capacity planning approach
was proposed with the base linear programming model, and
its non-linear extension where equipment parameters are
adjustable. Leveraging these parameter adjustments, the user
and model can identify the optimal combination of capacity
and equipment capability settings on a rolling horizon. To
solve the nonlinear extension of the original problem, a
neighborhood search iterator can be applied, which explores
the impact of unit capacity and yield changes on the linear
relaxation of the original problem and provides guidance to
set parameters for the original MILP model.

A series of numerical experiments were conducted to assess
the business benefits that can be achieved by the
optimization. Hence, the optimizer was expected to detect the
potential investment savings, to avoid capital spending in
surplus capacities. The experimental results show potential in
applying the proposed model in full scale real factory
planning situations.

In addition, the web-based interactive user interface provides
the ease of data exploration and navigation using the capacity
drilldown function which helps planners to analyze demand
and capacity results down to the parameter level detail. This
allows planners and process owners to identify processes
needing capacity improvements and can focus investments on
new products and new technologies.

6.0 RECOMMENDATIONS

The key input variables (KIVs) are currently being uploaded
to the system using an excel file and converted to the
database. Thus parameter scenario adjustments are conducted
manually based on the proposal of the model. It is
recommended in the future to extract the KIVs directly online
linking the system to data sources for volume, tool
performance, and oracle (procurement cost), etc.
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It is also recommended to complete ongoing enhancements
on the existing beta model to not only cover the planning
needs related to tool capacity and new technology, but also
productivity and end-of-life tool sustenance, capital release
and expenditure planning, depreciation, and capex forecast-
to-forecast sensitivity gap analysis.

Currently, the authors are testing the model in other factories
(China, Malaysia, Thailand) where the planning logic and
rules are similar, and extended the model to multi-site
planning scenarios. It is recommended to complete this
project harmonization across the different sites to explore the
potential in synergistic cross-site capacity balancing.
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