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ABSTRACT

Semiconductor manufacturing operations are intrinsically
reliant on facilities systems that support critical
environmental and utility parameters. Disruptions in these
systems pose substantial risks to product quality, particularly
manifesting as oxidation and shear failures—two
predominant failure modes in semiconductor metal layers.

This paper presents a novel approach to eliminating facilities-
related disruptions by leveraging an automation solution
through the integration of SCADA (Supervisory Control and
Data Acquisition), RTC (Real Time Control and Monitoring
System Architecture) a Tl developed software, and SPC
(Statistical Process Control) systems via the OPCUA (Open
Platform Communications Unified Architecture) protocol. A
predictive equation was developed to determine the allowable
exposure time and moisture absorption threshold for each
metal layer, enabling real-time risk assessment and
interdiction. The implemented system enhances operational
reliability, supports lean and lights-out manufacturing
objectives, and significantly reduces dependence on external
facility notifications that are susceptible to delay and failure.

1.0 INTRODUCTION

In the highly controlled environment of semiconductor
fabrication, precision and consistency are critical to ensuring
yield and product reliability. Among the numerous
environmental factors monitored during manufacturing,
humidity and moisture control play a pivotal role in
preventing oxidation and shear failure of metal layers.
Traditionally, these controls are managed through facility-
wide systems that are not fully integrated into the real-time
automation of the manufacturing floor.

The emergence of Industry 4.0 has introduced new paradigms
in manufacturing, particularly through the application of

smart systems and automation. This paper explores the
implementation of a SCADA-RTC-SPC Engine, designed to
interface directly with facilities systems and internal
automation layers, creating a feedback loop capable of active
monitoring, interdiction, and notification to prevent quality
excursions due to environmental factors.

1.1 Oxidation and Failed Shear

Oxidation, a chemical process where a substance loses
electrons or gains oxygen, or loses hydrogen. Natural
oxidation can occur within hours days weeks or even months
however we can speed it up through aggressive oxidation.
Aggressive oxidation happens when there is an oxidizing
environment like high temperature, high moisture or high
oxygen content. Studies like ‘Effect of oxidation and surface
roughness on the shear strength of single-lap-joint adhesively
bonded metal specimens by tension loading’ have shown that
oxidation can lead to a decrease in adhesive strength or shear
failure which frequently occurs at the interface of two metals
stacked together where the molecular bond is weaker than the
materials themselves causing them to separate. Refer to Fig 1
for the sample failed shear modes images.

Fig.1. Failed éheér Mode Images

1.2 Temperature and relative humidity

The resistance of materials decreases with increasing
temperature and humidity. In contrast, surface resistance
(rate) is sensitive to ambient humidity, while bulk resistance
(rate) is more sensitive to temperature.*
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We can see that in semiconductor wafers affected by
uncontrolled environmental conditions like high temperature,
high relative humidity or high oxygen content since it shows
failure in electrical performance related to high contact
resistance due to oxidation as shown in Fig. 2.

2052623_AFFECTED
2025797_BASELINE

Fig.2. Contact resistance comparison

When the contact surface is oxidized, the contact resistance
will increase sharply.?

1.3 Facilities Systems

Manufacturing plant is supported by the facilities systems.
The facilities system refers to the combination of various
systems within a building or facility that ensure its
functionality, comfort, safety, and efficiency which includes
everything from basic utilities like plumbing and electrical to
more complex systems like fire protection, HVAC (heating,
ventilation, and air conditioning), and security.

Environmental and process conditions inside the
manufacturing line need to be monitored and maintained with
extreme precision as semiconductor components like chips
are extremely vulnerable to moisture. Water is, in fact, the
most  significant  contaminant  in  semiconductor
manufacturing, with estimates indicating that non-optimal
moisture conditions account for as much as 25% of lost
revenue.®

One known method for monitoring and control of facilities
systems critical parameters, ensuring they remain within
acceptable limits is automation through systems like
SCADA. SCADA is highly vulnerable to cyberattack thus
traditionally the system is not connected to the internet. This
limited the accessibility of SCADA data to Manufacturing
Operations thus created a data flow impairment and reduction
in reaction time once facilities related disruption occurs. This
always leads to high scrap cost and critical quality issues.

1.4 Real Time Control and Monitoring System Architecture

(RTC)

To continuously gathers data such as temperature, pressure,
flow rates, and other key indicators that reflect the

performance and health of the tools, RTC, a Tl developed
software, is a real-time monitoring platform designed to track
and collect critical tool parameters from manufacturing
equipment through modelling. The model can also alert
automation systems for any abnormalities on the tool thus
avoiding its operation for production.

1.5 Manufacturing System

An MES is a software-based solution used in manufacturing
to monitor and control production processes on the shop
floor. In manufacturing operations, an MES serves as a bridge
between the planning and control systems of an enterprise
and the actual manufacturing operations

1.6 Quality System

Statistical Process Control (SPC) is a method of quality
control that uses statistical techniques to monitor and control
a process. Statistical Process Control is a data-driven
approach to quality management that allows the user to
understand, monitor, and improve processes over time. It’s
like a health check-up for manufacturing processes, providing
real-time insights into their performance and stability.® This
provides a real time containment for any product processed
on out of control conditions.

Citing the effect of uncontrolled facilities system and its
quality risk and effect, oxidation, shear failure and high
contact resistance, this study discloses the process of
attaining improved reliability and reducing dependence on
external facility notifications—which are prone to delays and
failures—a SCADA-RTC-SPC Engine has been developed to
interface directly with the SCADA system using the OPC UA
protocol. This local solution enhances operational awareness,
facilitates real-time monitoring, and enables proactive
machine and lot interdiction and user notifications through
integration with internal automation systems.

2.0 REVIEW OF RELATED WORK

In the paper SCADA WebView: A State-of-the-Art
Enterprise Transmission SCADA Engine, the authors
described an architectural overview of indigenously
developed WebView, a distributed, scalable, and fault-
tolerant web-based transmission SCADA Engine. Kafka-
based data acquisition from Power System telemetries,
person-centric HMI, reporting and trending for Bl, SVG-
based Power system graphics editor, diagnostic tools,
protocol-agnostic implementation, seamless integration with
underlying protocols, support for legacy systems are the
prime features of the designed system.®



34t" ASEMEP National Technical Symposium

Similar approach was used in this study further enhancing it
by integrating it to automation systems.

3.0 METHODOLOGY

3.1 Environmental Conditions

This study involved using wafers with different metal layers
were processed in varied conditions and exposed to different
Temperature and Relative humidity setting inside an oven at
a certain period of time. The critical input parameters were
identified through accomplishing the input variable matrix
related to processing of each metal layer. Refer to table 1.

Table 1. Input Variable Matrix for Environmental

Conditions
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Responses were measured through resistivity shift and shear
mode results. Refer to Table 2 for the phase 1 DOE
employing the input variable matrix.

Table 2. Phase 1 DOE Matrix for Environmental Conditions

BASELINERH USLRHand OOS RH and
and Temp Temp Temp

Peripheral Condition GOOD BAD GOOD BAD GOOD BAD

Metal A 1 2 3 4 5 6
Metal B 7 8 9 10 11 12
Metal C 13 14 15 16 17 18
Metal C + PR 19 20 21 22 23 24
Pl + Metal C 25 26 27 28 29 30

In the phase 2 DOE as seen in Table 3, the study on different
suppliers for sputter processing was included in the
evaluation.

Table 3. Phase 2 DOE Matrix for Environmental Conditions

BUMP supplier BASELINERH USLRHand OOSRH and
LAYER and Temp Temp Temp
veale gy X i
vearcepr A ¥ » »
emeac A8 “ =

Peripheral integrity was checked through the use of Humidity
Indicator Card (HIC). Refer to table 4. Adobe Photoshop ®
was used to quantify changes in gradient color-correlating to
quantity of moisture present during HIC simulation.

Table 4. HIC Paper Testing Conditions

Location Conditions

HIC Paper Test S|°t215’ 12, Good Bad Good Bad Good Bad
TIME (HRS) 051 2 480512 480512438

©

®

® Only Web Colors

Treat & ;
Prepare —> Load Shap —> Imaging

Fig. 3. Adobe Photoshop procedure for quantifying moisture Absorption

3.2 Process Gas Monitoring

The results from Section 3.1 was used in this study and
applied into the determination of the best signal for detection
of Process Gas Moisture Contamination. Samples taken were
from baseline process and from those that were exposed to
contaminated process gas. The critical input parameters were
identified through accomplishing the input variable matrix
related to processing of each metal layer. Refer to table 5.
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Table 5. Input Variable Matrix for Process Gas Monitoring is also showing a significant response to moisture absorption
with p-value< 0.05. Refer to Fig. 6.
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3.3 SCADA to RTC to SPC controls :én.ozm?z 0s .
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A SCADA-RTC-SPC Engine was developed to bridge the P & T4 s LG h e
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factory automation. Using the OPC UA protocol, the engine e PR T TR
collects real-time environmental data (temperature, humidity, Metal C + PR 0.073981 0044060 168 0.1052

Bad Peripheral 0.0581 0.020611 2.82

pressure, etc.) and correlates it with MES for machine and
Work-In-Progress (WIP) data tracked by RTC and SPC

(Statistical Process Control) metrics. HIC testing of Bad Peripheral is showing more evident
moisture absorption than Good peripheral as shown on Fig.

Fig. 6. Prediction Profiler results for Phase 1 DOE data
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evaluations have highest response in moisture absorption @ gig 7, HIC visual results and moisture content thru gradient color scoring
seen on Fig. 5. These metal layers and the combination with
resist are most susceptible to oxidation. Using bad peripheral
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HIC MOISTURE ABSORPTION QUANTIFICATION vs. PERIPHERAL
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Flg 8. HIC Moisture Absorption Quantification vs Peripheral

Predicted equation revealed that maximum moisture content
of occurs at 8 hours exposure time. Above 8 hours exposure
time, there is no additional absorption of moisture. Supplier
B splits shows steepest slope at USL RH and Temperature
thus is more susceptible to oxidation as shown on to Figure
9.
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Fig. 9. Predicted Equation for each Metal and resist combination
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Fig. 10. Prediction profiler data for maximum relative humidity and
temperature identification at zero moisture absorption

From the combined RH-TEMP simulation data, maximum
RH and temperature when moisture absorption will start was
identified in a prediction profiler where desirability is
maximum at 1 and value of moisture is zero as shown in

Figure 11-12. This calculated data is set as the control limit
in the Tool Information control model
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Fig. 11. Contour Profiler data for maximum relative humidity and
temperature identification at zero moisture absorption

Data from process runs were analyzed to derive an empirical
model predicting the critical exposure limits of metal layers.
The equation calculates the rate of absorption, maximum time
and moisture which we can expose our metal layers as basis
of risk assessment for similar issues. This equation will help
immediately plot moisture absorbed by each metal layer.
Refer to Fig. 13.

A Prediction Expression
-2.185307358
+0.0221269831 «RH
+0.0603116271 - Temp

+0.0037946243 . Staging
Fig. 13. Predicted Equation for Moisture Absorption

This model was validated against actual process excursions
and demonstrated high predictive accuracy. The overall
breakdown of % Contribution of factors causing moisture
absorption test are as shown in Table 6.

Table 6. % Contribution of Factors affecting Moisture
Absorption

Relatwe BU [P tagln Perlpheral

Contribution 33.7 24.3 14.6 13.76 8.33
(%)

4.2 Process Gas Monitoring

Based on the Metal A Sheet Resistance versus Moisture
study, strong correlation in the increase of resistivity together
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with the moisture content of Process Gas which shows 89%
coefficient of determination (r?) as shown in Figure 14.

Metal A versus Average Moisture

Metal A Resistance

Average Moisture

Fig. 14. Metal A resistance versus average moisture exposure.

Metal B Sheet Resistance which also manifested out of
control and out of specification conditions shows only 48%
coefficient of determination (r?) as shown in Figure 15.

Metal B vs Average Moisture

Metal B Resistance

Average Moisture

Fig. 15. Metal B resistance versus average moisture exposure.

Metal A sheet resistance can have a higher chance in
detecting high moisture level when Process Gas
contamination occur. With the identification of Metal A
resistance as the more effective small signal for gas
contamination detection, OOC and OOS moisture level are
defined for the process gas and is set as limits in the Machine
Interdiction model.

5.0 CONCLUSION

The SCADA-RTC-SPC Engine presents a scalable and
efficient solution to a longstanding challenge in
semiconductor manufacturing. By integrating facility
systems directly with factory automation and embedding
predictive  intelligence  into  process  monitoring,
manufacturers can significantly reduce quality risks
associated with environmental disruptions. This system
contributes directly to operational excellence and sets the
foundation for fully autonomous, lights-out semiconductor
fabs.

The new % RH and Temperature set-point for BUMP must
be enforced to minimize moisture absorption that is
impacting die quality and reliability. In thus study, the
following information was collected, maximum moisture
content and absorption rate that each BUMP layers can take

or absorb, derived equations providing the percentage of
moisture absorbed as a function of Temperature, RH, Time
of staging, to which can be used as reference for future risk
assessment of similar Facilities system issue or any
qualification of new chemistries or machine which may
impact moisture absorption on material.

The MAD (moisture absorption desorption) analysis
retrofitted to be used for samples in wafer form can be used
by BUMP for any defect or issue simulation from which
Environment and process moisture abnormality is the
potential root cause.

The New Real Time SCADA Data Analyzer for facilities
systems which monitored critical input parameters through
connectivity to RTC and SPC thus enabling Auto-STATE
CHANGE of machine or equipment and Auto-LOT HOLD
in the manufacturing systems. The predictive equation
enabled proactive quality assurance by visualizing real-time
risk levels across all monitored metal layers, thereby
significantly improving operational awareness.

With this program, the following benefits were achieved,
Reduced Scrap Rate and Cost by > 95%, Reduced affected
lots by facilities Issue by 99%, Reduced Machine downtime
by 98%, Real Time Issue detection, control and immediate
reaction employed at Manufacturing Operations Area.

6.0 RECOMMENDATIONS

The integration of the SCADA and manufacturing operations
to react during facilities disruption events without human
intervention is highly important to the execution of Lights
Out Strategy. It is highly recommended to employ neural
networks or machine learning for more complex and advance
algorithms.

To achieve its ultimate universal applications, future
enhancements will focus on expanding predictive models to
other failure modes (e.g., corrosion, ESD), applying machine
learning for dynamic threshold adjustments, and integrating
with Al-driven decision support systems for full closed-loop
control.
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