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ABSTRACT 

 

This paper presents Knowledge Gate, a state-of-the-art 

system that seamlessly integrates user-provided documents 

into a large language model (LLM)-powered chatbot’s 

knowledge base. Traditional chatbot systems require manual 

tuning, data preprocessing, or complex pipeline development 

to ingest and utilize new information. Knowledge Gate 

eliminates this bottleneck by automating the ingestion, 

parsing, and embedding of structured and unstructured 

documents, such as PDFs, Word, and PowerPoint files, 

directly into the chatbot’s context-aware memory 

architecture. Leveraging advanced techniques in natural 

language understanding, retrieval-augmented generation 

(RAG), and vector-based semantic search, Knowledge Gate 

enables dynamic, contextually accurate responses grounded 

in user-specific content without retraining the underlying 

model. This approach significantly reduces integration effort, 

enhances adaptability for domain-specific applications, and 

democratizes access to enterprise-level knowledge 

automation. Experimental evaluations demonstrate high 

relevance scores and accuracy across multiple use cases, 

including customer support, technical documentation access, 

and knowledge management systems.   

 

 

1.0 INTRODUCTION 

 

The emergence of Large Language Models (LLMs) has 

transformed the landscape of natural language processing 

(NLP), enabling human-like dialogue, text summarization, 

code generation, and more [1]. Despite their remarkable 

capabilities, current LLM-based systems are inherently 

limited by static training data and lack mechanisms for 

incorporating user-specific or context-specific knowledge on 

the fly. This bottleneck has sparked a growing demand for 

systems that can dynamically augment LLMs with external 

knowledge, especially in enterprise and research settings 

where proprietary information is often stored in document 

formats inaccessible to traditional chatbot architectures. 

 

To address this challenge, we present Knowledge Gate—an 

intelligent document ingestion and knowledge augmentation 

framework that enables LLM-powered chatbots to 

dynamically integrate user-uploaded files into their 

operational context. Knowledge Gate supports three 

commonly used document formats: Microsoft PowerPoint 

(.pptx), Microsoft Word (.docx), and Portable Document 

Format (.pdf). These file types constitute most of the business 

and academic documentation, making Knowledge Gate a 

practical solution for real-world use cases [2]. 

 

The system is designed around a pipeline that combines 

document parsing, text extraction, semantic chunking, vector 

embedding, and retrieval-augmented generation (RAG). 

Upon receiving a document, Knowledge Gate preprocesses 

its contents, breaks them into semantically meaningful 

segments, and embeds them into a vector database using a 

high-dimensional embedding model. During user interaction, 

relevant document fragments are retrieved and used as 

contextual input to the LLM, significantly improving the 

chatbot’s ability to generate accurate and context-aware 

responses [3], [4]. 

 

Several frameworks have explored retrieval-based 

enhancements to LLMs, including systems like LangChain 

[5] and Haystack [6]. However, these frameworks often 

require significant manual configuration or code-level 

integration. Knowledge Gate distinguishes itself by offering 

a no-code, automated interface that abstracts away the 

underlying complexity, allowing end-users to enrich their 

chatbot’s knowledge base simply by uploading supported 

files. This design prioritizes usability, real-time performance, 

and scalability, making it suitable for both technical and non-

technical stakeholders. 

 

Furthermore, Knowledge Gate ensures that all processing is 

carried out with respect to data privacy and organizational 

compliance requirements. No document is stored persistently 

unless explicitly permitted, and embeddings are confined to 

secure, session-specific environments. 
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2.0 REVIEW OF RELATED WORK 

 

The integration of user-specific documents into 

conversational AI systems has gained momentum in 

corporate and industrial environments, particularly within 

knowledge-intensive sectors such as manufacturing, 

automotive, and high-tech assembly. The motivation lies in 

improving operational efficiency, knowledge dissemination, 

and decision-making by enabling intelligent agents to access 

domain-specific documentation in real time. 

 

Several major corporations have pioneered the use of 

retrieval-augmented generation (RAG) and document-based 

augmentation techniques in manufacturing settings. For 

instance, Siemens has implemented AI systems that ingest 

technical manuals, maintenance protocols, and compliance 

documentation to assist engineers on the production floor 

through intelligent assistants [7]. These systems leverage 

semantic search and contextual response generation to help 

technicians diagnose issues faster and reduce machine 

downtime. 

 

Similarly, General Electric (GE) has integrated natural 

language interfaces with digital twins and process 

documentation. Their systems parse extensive equipment 

documentation and operational guidelines to support real-

time troubleshooting and predictive maintenance in industrial 

environments [8]. GE’s approach exemplifies the potential 

for LLM-augmented document systems to become part of 

mission-critical infrastructure. 

 

In the automotive industry, Bosch and Volkswagen have 

deployed AI solutions to improve training and operations by 

embedding engineering documents, manuals, and SOPs into 

virtual assistants used in assembly lines [9]. These assistants 

can respond to technician queries by retrieving and presenting 

information from documents that would otherwise require 

manual lookup, thereby reducing human error and improving 

productivity. 

 

Another noteworthy example is IBM Watsonx Assistant, 

which allows enterprises to upload documents in formats 

such as Word and PDF to create a searchable and interactive 

knowledge base for internal operations [10]. Used across 

sectors—including finance, telecom, and manufacturing, this 

system shares conceptual similarity with Knowledge Gate in 

its use of semantic chunking, vector embeddings, and 

retrieval mechanisms. 

 

In terms of open-source tooling, the Haystack framework by 

deepset.ai has been adopted in various manufacturing use 

cases where process manuals, ISO certifications, and 

compliance documents must be queried through 

conversational agents [6]. This framework allows integration 

of PDF and DOCX documents and uses dense vector search 

to deliver contextual responses to production staff. 

 

These industry applications validate the core design of 

Knowledge Gate, which aims to democratize this capability 

by offering a lightweight, real-time solution tailored for 

SMEs and R&D environments. While enterprise solutions 

often require extensive customization and infrastructure, 

Knowledge Gate emphasizes usability and immediate value 

by enabling LLMs to ingest PowerPoint, Word, and PDF files 

without specialized configuration. 

 

 

3.0 METHODOLOGY 

 

This study proposes an automated data ingestion pipeline 

designed to convert user-uploaded documents into a 

structured format suitable for integration with a large 

language model (LLM)-powered knowledge base. 

 

3.1 Downloader / Interpreter / Ingester: 

 

The process begins when users upload document files—

specifically Microsoft Word (.docx), PowerPoint (.pptx), and 

Portable Document Format (.pdf) files—via a web-based 

front-end interface. These uploaded documents are stored in 

a temporary front-end database for preprocessing. Each 

document is then programmatically parsed into individual 

pages, and each page is rendered as a high-resolution image 

to facilitate accurate text extraction. 

 

Subsequently, these images are passed through an ingestion 

engine to convert the visual content into machine-readable 

text. The extracted text for each page is compiled and tagged 

with relevant metadata, including document ID, page 

number, and upload timestamp. This structured text data, 

along with its associated metadata, is then uploaded and 

securely stored in a designated Amazon S3 bucket for 

persistent storage and future retrieval. 

 

Following storage, a batch processing mechanism triggers the 

ingestion of this data into the LLM’s vectorized knowledge 

base. The ingestion process involves tokenization, 

embedding generation, and semantic indexing to allow 

context-aware retrieval during user queries. This integration 

ensures that the knowledge base is enriched with the most 

recent and relevant user-uploaded content. 

 

Finally, upon successful ingestion of the processed content 

into the LLM’s knowledge base, an automated 

acknowledgment email is dispatched to the user. This email 

serves as confirmation that their documents have been 

successfully processed and assimilated into the intelligent 

system. 
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Fig. 1.  Workflow diagram of knowledge gate in action.  

 

 

This methodology offers a scalable, automated, and user-

transparent framework for real-time knowledge 

augmentation in enterprise LLM applications. 

 

3.2 Auto Question and Answering 

 

Auto QnA is a core submodule of Knowledge Gate that, 

given a target knowledge-graph identifier (kg_id), produces 

both explicit (“Level 1”) and implicit (“Level 2”) question–

answer pairs for downstream truth-prompting. Figure X 

shows the end-to-end flow. 

 

 

 
 
Fig. 2.  Workflow diagram of auto question answering 

 

3.2.1 Inputs 

• kg_id: Unique identifier of the knowledge graph or 

document segment 

• n₁: Number of Level 1 (explicit fact) queries to 

generate 

• n₂: Number of Level 2 (implicit fact) queries to 

generate 

 

3.2.2 Inputs Chunk Extraction 

 

1. Source material (e.g., text, OCR’d image) is 

tokenized into discrete “chunks.” 

 

2. Select up to the first 50 chunks tagged with the target 

kg_id. 

 

3.2.3 LLM Prompting 

 

Two separate system prompts are issued to an LLM, each 

operating over the same set of retrieved chunks: 

 

• Level 1 System Prompt 

“Using exactly one chunk, generate an explicit-fact question 

and its answer. The question should retrieve a single fact 

verbatim from that chunk.” 
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• Level 2 System Prompt 

“Using at least two distinct chunks, generate an implicit-fact 

question and its answer. The answer must be supported by 

synthesizing information across all selected chunks.” 

 

3.2.4 Integrity Checks 

Each candidate QnA pair is validated before acceptance: 

 

• Level 1 

 

1. Exactly one chunk_id is referenced, and it matches 

the input kg_id. 

2. The answer appears verbatim (or as a direct fact) 

within that chunk. 

 

• Level 2 

 

1. At least two distinct chunk_ids are referenced; all 

must match the input kg_id. 

2. The answer is substantiated by information present 

in each referenced chunk. 

 

If any check fails, the pair is discarded, and the corresponding 

prompt is reissued. This loop continues until the module has 

produced n₁ valid Level 1 pairs and n₂ valid Level 2 pairs. 

 

3.2.5 Outputs 

 

A collection of structured QnA records, each comprising: 

“kg_id, query_type (L1 or L2), question_text, answer_text, 

[list of chunk_id]” 

 

Example 

- L1: 

 

• Question: “What is the capital of France?” 

• Answer: “Paris” 

• Chunk IDs: [42] 

 

- L2: 

 

• Question: “Why is Paris considered France’s 

primary cultural hub?” 

• Answer: “Because it contains the highest density of 

national museums, architectural landmarks, and 

historical archives across multiple regions.” 

• Chunk IDs: [42, 47] 

 

By enforcing these prompts and integrity checks, Auto QnA 

guarantees that every generated pair is both syntactically 

valid and semantically grounded in the source data. 

 

3.3 Truth Prompt Pairs Evaluation 

 

 
Fig. 3. Truth Prompt Pair High Level Architecture. The Agent Grader 
evaluates the General Agent’s response against the expected answer. 
 

The Truth Prompt Pair (TPP) Evaluation pipeline is designed 

to support automated response quality monitoring for LLM-

based systems. It enables structured evaluation of model-

generated outputs by comparing them against predefined 

expected answers. As depicted in Fig. X, the system 

architecture consists of two core components: the Keyword 

Weights Module and the Truth Prompt Pair API. The 

Keyword Weights Module is responsible for dynamically 

computing and updating keyword importance across the 

knowledge base, while the TPP API enables automated 

evaluation of LLM responses through a structured interaction 

between the General Agent, the Agent Grader, and the 

Knowledge Base. The following sections provide a detailed 

exposition of these core components. 

 

3.3.1 Keyword Weights 

 

An asynchronous text processing pipeline was developed to 

compute weighted keyword representations using 

lemmatization and Term Frequency–Inverse Document 

Frequency (TF-IDF) vectorization. Raw textual data was first 

normalized by removing punctuation and special characters 

using regular expressions. Each cleaned chunk was then 

lemmatized in two sequential passes using the 

WordNetLemmatizer, initially with the part-of-speech 

parameter set to noun and subsequently to adjective. This 

dual-stage lemmatization ensured consistent reduction of 

words to their canonical forms, improving feature quality. 

Following lemmatization, the TfidfVectorizer was employed 

to convert the processed text into numerical vectors. The TF-

IDF value for a term t in a document d, within a corpus D, 

was calculated using the following formulation: 

 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑)  × 𝐼𝐷𝐹(𝑡, 𝐷) 

 

Where: 

𝑇𝐹(𝑡, 𝑑) =
𝑓𝑡,𝑑

∑ 𝑓𝑡′,𝑑𝑡′∈𝑑
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𝐼𝐷𝐹(𝑡, 𝐷) = log (
𝑁

1 + |{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}|
) 

 

As described in Eq. 1, f(t,d) represents the frequency of term t 

in document d, and N denotes the total number of documents 

in the corpus. The TF component captures term relevance 

within a document, while the IDF component down-weights 

terms that appear frequently across multiple documents, thus 

emphasizing more discriminative keywords. The final output 

is a keyword-weight dictionary, mapping each term to its 

computed TF-IDF score. The entire process was designed to 

run asynchronously to ensure scalability and responsiveness, 

and operational metrics were logged for performance 

monitoring. 

 

 
Fig. 4. Lemmatization Example in Manufacturing Context. This figure 

illustrates the transformation of a raw text chunk into its lemmatized form. 
 

Fig. 4 illustrated the application of this pipeline in a 

manufacturing domain. Consider the following example text 

chunk extracted from a production log: 

 

Raw chunk: “Operators monitored the rotating parts for 

excessive vibrations during machine operation.” 

 

The preprocessing begins with lemmatization, which 

standardizes words to their base or dictionary form. After 

lemmatizing the text first as nouns and then as adjectives, the 

resulting chunk is: 

 

Lemmatized chunk: “Operator monitor the rotating part for 

excessive vibration during machine operation.” 

 

This transformation reduces morphological variance (for 

example, “Operators” to “Operator”, “vibrations” to 

“vibration”) and improves consistency in token 

representation across similar documents. 

 

Subsequently, the TF-IDF vectorizer assigns importance 

scores to each term within a corpus of similar maintenance 

logs or quality reports. For instance, if the term “vibration” 

appears frequently in this document but rarely across the 

entire corpus, its TF-IDF score will be relatively high, 

indicating its discriminative relevance. Conversely, generic 

terms like “machine” or “operation”, which are common 

across documents, will receive lower scores. 

 

Mathematically, the TF-IDF weight for the term “vibration” 

in this document is computed as: 

 

𝑇𝐹 − 𝐼𝐷𝐹("vibration") = 𝑇𝐹(vibration) 

×  log (
𝑁

1 + 𝐷𝐹("vibration")
) 

 

Where N is the total number of documents in the corpus and  

DF(“vibration”) is the number of documents containing the 

term “vibration.” 

 

This method ensures that domain-specific keywords such as 

“vibration,” “rotating,” or “overheating” are emphasized in 

downstream applications like automated diagnostics, 

keyword-based retrieval, or LLM prompt evaluation in 

manufacturing support systems. 

 

3.3.2 Truth Prompt Pair API 

 

The Truth Prompt Pair (TPP) API is a critical component of 

the system pipeline, designed to evaluate the performance of 

the General Agent following the ingestion of new knowledge 

into the Knowledge Base. This pipeline ensures that only 

high-quality, semantically accurate content is retained for 

downstream interaction. Prior to permanently storing newly 

ingested knowledge, the TPP API performs validation to 

verify that the General Agent can produce accurate and 

contextually relevant responses using the updated 

knowledge. The outcome of this evaluation determines 

whether the knowledge is approved for active use or flagged 

for rejection. 

 

As illustrated in Fig. X, the system processes a combination 

of user-provided and auto-generated question–answer (Q&A) 

pairs. These Q&A pairs originate from the Knowledge Gate 

UI and the Auto-Q&A Pipeline, respectively. Each question 

is forwarded to the General Agent, which generates a 

corresponding response based on the current state of the 

knowledge base. The generated response is then assessed by 

the Agent Grader, a dedicated evaluation module that 

compares the response against the expected answer. 

 

The output of the evaluation process comprises three key 

elements. First, each response generated by the General 

Agent is assigned a classification label based on its alignment 

with the expected answer. The classification falls into one of 

four categories: (i) Exact, indicating the response fully 

matches or captures the intended meaning of the expected 

answer; (ii) Superset, where the response is correct but 

includes additional information; (iii) Subset, denoting a 

partially correct response that lacks essential details; and (iv) 

Misaligned, representing responses that deviate significantly 

from the expected answer or contain semantic 

inconsistencies. Second, the evaluation includes a confidence 

score, which quantitatively reflects the overall quality and 

reliability of the generated response. Finally, a justification is 

provided to explain the reasoning behind the assigned 

classification, offering transparency and interpretability in 

the decision-making process. 
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Upon completion of the evaluation, a summary email is sent 

to the user, presenting the original Q&A pair, the General 

Agent’s response, its classification, and the accompanying 

justification. If the user approves the evaluation result, the 

corresponding data is permanently committed to the 

knowledge base, thereby enabling interactive querying 

through the General Agent. Conversely, if the user rejects the 

evaluation, the ingested knowledge is marked as rejected in 

the backend, and access to this data is restricted from agent-

level interactions. 

 

This human-in-the-loop validation framework ensures robust 

quality control and accountability, safeguarding the integrity 

of the knowledge base and the reliability of the 

conversational agent’s outputs. 

 

4.0 RESULTS AND DISCUSSION 

 

Interpretation Phase 

The interpretation phase involves semantic parsing and 

contextual understanding of each page. Using 5 parallel 

interpreter instances, we were able to process all 65 pages in 

280 seconds, which translates to an average of ~5.23 seconds 

per page. This performance metric serves as a baseline for 

projecting system throughput under increased loads. 

 

Ingestion Phase 

Post-interpretation, the pipeline stores both the content and 

associated metadata (1:1 ratio) into an S3-compatible object 

store. This amounts to 130 individual uploads for 65 pages. 

Using a single ingestion instance, the total ingestion time was 

measured at 400 seconds, averaging ~3.08 seconds per object 

(or ~6.15 seconds per page, accounting for both content and 

metadata). 

 

Given the I/O-bound nature of this phase, parallelization 

yields significant potential benefits. As with interpretation, 

increasing the number of ingestion workers from 1 to 10 is 

expected to reduce ingestion time by an order of magnitude, 

assuming minimal network or disk I/O contention. 

 

Scalability Plan 

Based on these observations, we propose scaling the system 

to 10 interpreter instances and 10 ingestion instances for 

production-grade throughput. This configuration is projected 

to handle tons of files, achieving our target for high-volume 

document processing within a practical operational window.. 

  

 

5.0 CONCLUSION 

 

Knowledge Gate represents a significant advancement in the 

integration of dynamic, user-provided knowledge into LLM-

powered conversational systems. By enabling the ingestion 

of commonly used document formats—PowerPoint, Word, 

and PDF—into a chatbot’s knowledge base, the system 

bridges a critical gap between static pretrained models and 

the ever-evolving informational needs of users. Through 

automated document parsing, semantic segmentation, and 

retrieval-augmented generation, Knowledge Gate empowers 

conversational agents to deliver contextually rich, accurate, 

and personalized responses in real time. 

 

While the current synchronous processing model presents 

performance limitations under high concurrency, plans to 

migrate to an asynchronous architecture aim to ensure 

scalability and responsiveness as the system scales. This 

enhancement will position Knowledge Gate as a robust and 

production-ready solution for industries and organizations 

that require adaptive, document-aware AI interfaces. 

 

In an era where timely access to domain-specific knowledge 

is a competitive differentiator, Knowledge Gate sets a 

forward-looking precedent for how LLMs can be transformed 

into intelligent, user-augmented assistants capable of real-

time learning and contextual reasoning. Future work will 

explore expanded file type support, multimodal ingestion 

capabilities, and tighter integration with enterprise 

knowledge management systems. 

 

 

6.0 RECOMMENDATIONS 

 

One of the key observations during the deployment and 

testing of Knowledge Gate was the system’s limited 

scalability under high user load, primarily due to its current 

synchronous execution model. In the existing architecture, 

each document ingestion request—whether a PowerPoint 

(.pptx), Word (.docx), or PDF (.pdf) file—is processed 

sequentially. This synchronous workflow includes parsing, 

semantic chunking, embedding generation, and database 

insertion, all performed in a blocking manner. As a result, 

when multiple users simultaneously attempt to upload and 

integrate documents, the system experiences bottlenecks, 

leading to increased latency and diminished responsiveness. 

 

To address this limitation and improve throughput, we 

strongly recommend transitioning the ingestion pipeline to an 

asynchronous architecture. By decoupling the document 

uploading interface from the processing backend and 

leveraging asynchronous task queues (e.g., Celery, 

RabbitMQ, or AWS SQS with background workers), 

ingestion tasks can be offloaded and executed in parallel. This 

shift would allow the user interface to remain responsive 

while long-running operations such as file parsing and 

embedding computation are handled asynchronously in the 

background. 
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Furthermore, asynchronous processing enables the use of 

concurrent resource management, such as batched vector 

insertions and parallel I/O operations, which can significantly 

enhance system performance and resource utilization.  

 

Ultimately, adopting an asynchronous ingestion pipeline will 

improve scalability, reduce processing delays, and future-

proof Knowledge Gate for broader deployment in multi-user 

environments. This architectural evolution aligns with the 

best practices in modern AI system design, where non-

blocking operations are essential for real-time responsiveness 

and operational efficiency.  
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