
34th ASEMEP National Technical Symposium

 1

KNOWLEDGE GATE: A PERSONALIZED GATEWAY FOR A SECURE, AND

CUSTOM LLM

Sabari Vishnu Jayanthan, Jaikrishnan

Jerald, Constantino

Jhon Vincent, Gupo

Operations Excellence, Data Analytics Engineering

Western Digital Corporation, 109 Technology Ave., SEPZ, Laguna Technopark, Binan, Laguna, Philippines

sabari.vishnu.jayanthan.jaikrishnan@wdc.com, jerald.constantino@wdc.com, jhon.vincent.gupo@wdc.com

ABSTRACT

This paper presents Knowledge Gate, a state-of-the-art

system that seamlessly integrates user-provided documents

into a large language model (LLM)-powered chatbot’s

knowledge base. Traditional chatbot systems require manual

tuning, data preprocessing, or complex pipeline development

to ingest and utilize new information. Knowledge Gate

eliminates this bottleneck by automating the ingestion,

parsing, and embedding of structured and unstructured

documents, such as PDFs, Word, and PowerPoint files,

directly into the chatbot’s context-aware memory

architecture. Leveraging advanced techniques in natural

language understanding, retrieval-augmented generation

(RAG), and vector-based semantic search, Knowledge Gate

enables dynamic, contextually accurate responses grounded

in user-specific content without retraining the underlying

model. This approach significantly reduces integration effort,

enhances adaptability for domain-specific applications, and

democratizes access to enterprise-level knowledge

automation. Experimental evaluations demonstrate high

relevance scores and accuracy across multiple use cases,

including customer support, technical documentation access,

and knowledge management systems.

1.0 INTRODUCTION

The emergence of Large Language Models (LLMs) has

transformed the landscape of natural language processing

(NLP), enabling human-like dialogue, text summarization,

code generation, and more [1]. Despite their remarkable

capabilities, current LLM-based systems are inherently

limited by static training data and lack mechanisms for

incorporating user-specific or context-specific knowledge on

the fly. This bottleneck has sparked a growing demand for

systems that can dynamically augment LLMs with external

knowledge, especially in enterprise and research settings

where proprietary information is often stored in document

formats inaccessible to traditional chatbot architectures.

To address this challenge, we present Knowledge Gate—an

intelligent document ingestion and knowledge augmentation

framework that enables LLM-powered chatbots to

dynamically integrate user-uploaded files into their

operational context. Knowledge Gate supports three

commonly used document formats: Microsoft PowerPoint

(.pptx), Microsoft Word (.docx), and Portable Document

Format (.pdf). These file types constitute most of the business

and academic documentation, making Knowledge Gate a

practical solution for real-world use cases [2].

The system is designed around a pipeline that combines

document parsing, text extraction, semantic chunking, vector

embedding, and retrieval-augmented generation (RAG).

Upon receiving a document, Knowledge Gate preprocesses

its contents, breaks them into semantically meaningful

segments, and embeds them into a vector database using a

high-dimensional embedding model. During user interaction,

relevant document fragments are retrieved and used as

contextual input to the LLM, significantly improving the

chatbot’s ability to generate accurate and context-aware

responses [3], [4].

Several frameworks have explored retrieval-based

enhancements to LLMs, including systems like LangChain

[5] and Haystack [6]. However, these frameworks often

require significant manual configuration or code-level

integration. Knowledge Gate distinguishes itself by offering

a no-code, automated interface that abstracts away the

underlying complexity, allowing end-users to enrich their

chatbot’s knowledge base simply by uploading supported

files. This design prioritizes usability, real-time performance,

and scalability, making it suitable for both technical and non-

technical stakeholders.

Furthermore, Knowledge Gate ensures that all processing is

carried out with respect to data privacy and organizational

compliance requirements. No document is stored persistently

unless explicitly permitted, and embeddings are confined to

secure, session-specific environments.

34th ASEMEP National Technical Symposium

 2

2.0 REVIEW OF RELATED WORK

The integration of user-specific documents into

conversational AI systems has gained momentum in

corporate and industrial environments, particularly within

knowledge-intensive sectors such as manufacturing,

automotive, and high-tech assembly. The motivation lies in

improving operational efficiency, knowledge dissemination,

and decision-making by enabling intelligent agents to access

domain-specific documentation in real time.

Several major corporations have pioneered the use of

retrieval-augmented generation (RAG) and document-based

augmentation techniques in manufacturing settings. For

instance, Siemens has implemented AI systems that ingest

technical manuals, maintenance protocols, and compliance

documentation to assist engineers on the production floor

through intelligent assistants [7]. These systems leverage

semantic search and contextual response generation to help

technicians diagnose issues faster and reduce machine

downtime.

Similarly, General Electric (GE) has integrated natural

language interfaces with digital twins and process

documentation. Their systems parse extensive equipment

documentation and operational guidelines to support real-

time troubleshooting and predictive maintenance in industrial

environments [8]. GE’s approach exemplifies the potential

for LLM-augmented document systems to become part of

mission-critical infrastructure.

In the automotive industry, Bosch and Volkswagen have

deployed AI solutions to improve training and operations by

embedding engineering documents, manuals, and SOPs into

virtual assistants used in assembly lines [9]. These assistants

can respond to technician queries by retrieving and presenting

information from documents that would otherwise require

manual lookup, thereby reducing human error and improving

productivity.

Another noteworthy example is IBM Watsonx Assistant,

which allows enterprises to upload documents in formats

such as Word and PDF to create a searchable and interactive

knowledge base for internal operations [10]. Used across

sectors—including finance, telecom, and manufacturing, this

system shares conceptual similarity with Knowledge Gate in

its use of semantic chunking, vector embeddings, and

retrieval mechanisms.

In terms of open-source tooling, the Haystack framework by

deepset.ai has been adopted in various manufacturing use

cases where process manuals, ISO certifications, and

compliance documents must be queried through

conversational agents [6]. This framework allows integration

of PDF and DOCX documents and uses dense vector search

to deliver contextual responses to production staff.

These industry applications validate the core design of

Knowledge Gate, which aims to democratize this capability

by offering a lightweight, real-time solution tailored for

SMEs and R&D environments. While enterprise solutions

often require extensive customization and infrastructure,

Knowledge Gate emphasizes usability and immediate value

by enabling LLMs to ingest PowerPoint, Word, and PDF files

without specialized configuration.

3.0 METHODOLOGY

This study proposes an automated data ingestion pipeline

designed to convert user-uploaded documents into a

structured format suitable for integration with a large

language model (LLM)-powered knowledge base.

3.1 Downloader / Interpreter / Ingester:

The process begins when users upload document files—

specifically Microsoft Word (.docx), PowerPoint (.pptx), and

Portable Document Format (.pdf) files—via a web-based

front-end interface. These uploaded documents are stored in

a temporary front-end database for preprocessing. Each

document is then programmatically parsed into individual

pages, and each page is rendered as a high-resolution image

to facilitate accurate text extraction.

Subsequently, these images are passed through an ingestion

engine to convert the visual content into machine-readable

text. The extracted text for each page is compiled and tagged

with relevant metadata, including document ID, page

number, and upload timestamp. This structured text data,

along with its associated metadata, is then uploaded and

securely stored in a designated Amazon S3 bucket for

persistent storage and future retrieval.

Following storage, a batch processing mechanism triggers the

ingestion of this data into the LLM’s vectorized knowledge

base. The ingestion process involves tokenization,

embedding generation, and semantic indexing to allow

context-aware retrieval during user queries. This integration

ensures that the knowledge base is enriched with the most

recent and relevant user-uploaded content.

Finally, upon successful ingestion of the processed content

into the LLM’s knowledge base, an automated

acknowledgment email is dispatched to the user. This email

serves as confirmation that their documents have been

successfully processed and assimilated into the intelligent

system.

34th ASEMEP National Technical Symposium

 3

Fig. 1. Workflow diagram of knowledge gate in action.

This methodology offers a scalable, automated, and user-

transparent framework for real-time knowledge

augmentation in enterprise LLM applications.

3.2 Auto Question and Answering

Auto QnA is a core submodule of Knowledge Gate that,

given a target knowledge-graph identifier (kg_id), produces

both explicit (“Level 1”) and implicit (“Level 2”) question–

answer pairs for downstream truth-prompting. Figure X

shows the end-to-end flow.

Fig. 2. Workflow diagram of auto question answering

3.2.1 Inputs

• kg_id: Unique identifier of the knowledge graph or

document segment

• n₁: Number of Level 1 (explicit fact) queries to

generate

• n₂: Number of Level 2 (implicit fact) queries to

generate

3.2.2 Inputs Chunk Extraction

1. Source material (e.g., text, OCR’d image) is

tokenized into discrete “chunks.”

2. Select up to the first 50 chunks tagged with the target

kg_id.

3.2.3 LLM Prompting

Two separate system prompts are issued to an LLM, each

operating over the same set of retrieved chunks:

• Level 1 System Prompt

“Using exactly one chunk, generate an explicit-fact question

and its answer. The question should retrieve a single fact

verbatim from that chunk.”

34th ASEMEP National Technical Symposium

 4

• Level 2 System Prompt

“Using at least two distinct chunks, generate an implicit-fact

question and its answer. The answer must be supported by

synthesizing information across all selected chunks.”

3.2.4 Integrity Checks

Each candidate QnA pair is validated before acceptance:

• Level 1

1. Exactly one chunk_id is referenced, and it matches

the input kg_id.

2. The answer appears verbatim (or as a direct fact)

within that chunk.

• Level 2

1. At least two distinct chunk_ids are referenced; all

must match the input kg_id.

2. The answer is substantiated by information present

in each referenced chunk.

If any check fails, the pair is discarded, and the corresponding

prompt is reissued. This loop continues until the module has

produced n₁ valid Level 1 pairs and n₂ valid Level 2 pairs.

3.2.5 Outputs

A collection of structured QnA records, each comprising:

“kg_id, query_type (L1 or L2), question_text, answer_text,

[list of chunk_id]”

Example

- L1:

• Question: “What is the capital of France?”

• Answer: “Paris”

• Chunk IDs: [42]

- L2:

• Question: “Why is Paris considered France’s

primary cultural hub?”

• Answer: “Because it contains the highest density of

national museums, architectural landmarks, and

historical archives across multiple regions.”

• Chunk IDs: [42, 47]

By enforcing these prompts and integrity checks, Auto QnA

guarantees that every generated pair is both syntactically

valid and semantically grounded in the source data.

3.3 Truth Prompt Pairs Evaluation

Fig. 3. Truth Prompt Pair High Level Architecture. The Agent Grader
evaluates the General Agent’s response against the expected answer.

The Truth Prompt Pair (TPP) Evaluation pipeline is designed

to support automated response quality monitoring for LLM-

based systems. It enables structured evaluation of model-

generated outputs by comparing them against predefined

expected answers. As depicted in Fig. X, the system

architecture consists of two core components: the Keyword

Weights Module and the Truth Prompt Pair API. The

Keyword Weights Module is responsible for dynamically

computing and updating keyword importance across the

knowledge base, while the TPP API enables automated

evaluation of LLM responses through a structured interaction

between the General Agent, the Agent Grader, and the

Knowledge Base. The following sections provide a detailed

exposition of these core components.

3.3.1 Keyword Weights

An asynchronous text processing pipeline was developed to

compute weighted keyword representations using

lemmatization and Term Frequency–Inverse Document

Frequency (TF-IDF) vectorization. Raw textual data was first

normalized by removing punctuation and special characters

using regular expressions. Each cleaned chunk was then

lemmatized in two sequential passes using the

WordNetLemmatizer, initially with the part-of-speech

parameter set to noun and subsequently to adjective. This

dual-stage lemmatization ensured consistent reduction of

words to their canonical forms, improving feature quality.

Following lemmatization, the TfidfVectorizer was employed

to convert the processed text into numerical vectors. The TF-

IDF value for a term t in a document d, within a corpus D,

was calculated using the following formulation:

𝑇𝐹 − 𝐼𝐷𝐹(𝑡, 𝑑, 𝐷) = 𝑇𝐹(𝑡, 𝑑) × 𝐼𝐷𝐹(𝑡, 𝐷)

Where:

𝑇𝐹(𝑡, 𝑑) =
𝑓𝑡,𝑑

∑ 𝑓𝑡′,𝑑𝑡′∈𝑑

34th ASEMEP National Technical Symposium

 5

𝐼𝐷𝐹(𝑡, 𝐷) = log (
𝑁

1 + |{𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑}|
)

As described in Eq. 1, f(t,d) represents the frequency of term t

in document d, and N denotes the total number of documents

in the corpus. The TF component captures term relevance

within a document, while the IDF component down-weights

terms that appear frequently across multiple documents, thus

emphasizing more discriminative keywords. The final output

is a keyword-weight dictionary, mapping each term to its

computed TF-IDF score. The entire process was designed to

run asynchronously to ensure scalability and responsiveness,

and operational metrics were logged for performance

monitoring.

Fig. 4. Lemmatization Example in Manufacturing Context. This figure

illustrates the transformation of a raw text chunk into its lemmatized form.

Fig. 4 illustrated the application of this pipeline in a

manufacturing domain. Consider the following example text

chunk extracted from a production log:

Raw chunk: “Operators monitored the rotating parts for

excessive vibrations during machine operation.”

The preprocessing begins with lemmatization, which

standardizes words to their base or dictionary form. After

lemmatizing the text first as nouns and then as adjectives, the

resulting chunk is:

Lemmatized chunk: “Operator monitor the rotating part for

excessive vibration during machine operation.”

This transformation reduces morphological variance (for

example, “Operators” to “Operator”, “vibrations” to

“vibration”) and improves consistency in token

representation across similar documents.

Subsequently, the TF-IDF vectorizer assigns importance

scores to each term within a corpus of similar maintenance

logs or quality reports. For instance, if the term “vibration”

appears frequently in this document but rarely across the

entire corpus, its TF-IDF score will be relatively high,

indicating its discriminative relevance. Conversely, generic

terms like “machine” or “operation”, which are common

across documents, will receive lower scores.

Mathematically, the TF-IDF weight for the term “vibration”

in this document is computed as:

𝑇𝐹 − 𝐼𝐷𝐹("vibration") = 𝑇𝐹(vibration)

× log (
𝑁

1 + 𝐷𝐹("vibration")
)

Where N is the total number of documents in the corpus and

DF(“vibration”) is the number of documents containing the

term “vibration.”

This method ensures that domain-specific keywords such as

“vibration,” “rotating,” or “overheating” are emphasized in

downstream applications like automated diagnostics,

keyword-based retrieval, or LLM prompt evaluation in

manufacturing support systems.

3.3.2 Truth Prompt Pair API

The Truth Prompt Pair (TPP) API is a critical component of

the system pipeline, designed to evaluate the performance of

the General Agent following the ingestion of new knowledge

into the Knowledge Base. This pipeline ensures that only

high-quality, semantically accurate content is retained for

downstream interaction. Prior to permanently storing newly

ingested knowledge, the TPP API performs validation to

verify that the General Agent can produce accurate and

contextually relevant responses using the updated

knowledge. The outcome of this evaluation determines

whether the knowledge is approved for active use or flagged

for rejection.

As illustrated in Fig. X, the system processes a combination

of user-provided and auto-generated question–answer (Q&A)

pairs. These Q&A pairs originate from the Knowledge Gate

UI and the Auto-Q&A Pipeline, respectively. Each question

is forwarded to the General Agent, which generates a

corresponding response based on the current state of the

knowledge base. The generated response is then assessed by

the Agent Grader, a dedicated evaluation module that

compares the response against the expected answer.

The output of the evaluation process comprises three key

elements. First, each response generated by the General

Agent is assigned a classification label based on its alignment

with the expected answer. The classification falls into one of

four categories: (i) Exact, indicating the response fully

matches or captures the intended meaning of the expected

answer; (ii) Superset, where the response is correct but

includes additional information; (iii) Subset, denoting a

partially correct response that lacks essential details; and (iv)

Misaligned, representing responses that deviate significantly

from the expected answer or contain semantic

inconsistencies. Second, the evaluation includes a confidence

score, which quantitatively reflects the overall quality and

reliability of the generated response. Finally, a justification is

provided to explain the reasoning behind the assigned

classification, offering transparency and interpretability in

the decision-making process.

34th ASEMEP National Technical Symposium

 6

Upon completion of the evaluation, a summary email is sent

to the user, presenting the original Q&A pair, the General

Agent’s response, its classification, and the accompanying

justification. If the user approves the evaluation result, the

corresponding data is permanently committed to the

knowledge base, thereby enabling interactive querying

through the General Agent. Conversely, if the user rejects the

evaluation, the ingested knowledge is marked as rejected in

the backend, and access to this data is restricted from agent-

level interactions.

This human-in-the-loop validation framework ensures robust

quality control and accountability, safeguarding the integrity

of the knowledge base and the reliability of the

conversational agent’s outputs.

4.0 RESULTS AND DISCUSSION

Interpretation Phase

The interpretation phase involves semantic parsing and

contextual understanding of each page. Using 5 parallel

interpreter instances, we were able to process all 65 pages in

280 seconds, which translates to an average of ~5.23 seconds

per page. This performance metric serves as a baseline for

projecting system throughput under increased loads.

Ingestion Phase

Post-interpretation, the pipeline stores both the content and

associated metadata (1:1 ratio) into an S3-compatible object

store. This amounts to 130 individual uploads for 65 pages.

Using a single ingestion instance, the total ingestion time was

measured at 400 seconds, averaging ~3.08 seconds per object

(or ~6.15 seconds per page, accounting for both content and

metadata).

Given the I/O-bound nature of this phase, parallelization

yields significant potential benefits. As with interpretation,

increasing the number of ingestion workers from 1 to 10 is

expected to reduce ingestion time by an order of magnitude,

assuming minimal network or disk I/O contention.

Scalability Plan

Based on these observations, we propose scaling the system

to 10 interpreter instances and 10 ingestion instances for

production-grade throughput. This configuration is projected

to handle tons of files, achieving our target for high-volume

document processing within a practical operational window..

5.0 CONCLUSION

Knowledge Gate represents a significant advancement in the

integration of dynamic, user-provided knowledge into LLM-

powered conversational systems. By enabling the ingestion

of commonly used document formats—PowerPoint, Word,

and PDF—into a chatbot’s knowledge base, the system

bridges a critical gap between static pretrained models and

the ever-evolving informational needs of users. Through

automated document parsing, semantic segmentation, and

retrieval-augmented generation, Knowledge Gate empowers

conversational agents to deliver contextually rich, accurate,

and personalized responses in real time.

While the current synchronous processing model presents

performance limitations under high concurrency, plans to

migrate to an asynchronous architecture aim to ensure

scalability and responsiveness as the system scales. This

enhancement will position Knowledge Gate as a robust and

production-ready solution for industries and organizations

that require adaptive, document-aware AI interfaces.

In an era where timely access to domain-specific knowledge

is a competitive differentiator, Knowledge Gate sets a

forward-looking precedent for how LLMs can be transformed

into intelligent, user-augmented assistants capable of real-

time learning and contextual reasoning. Future work will

explore expanded file type support, multimodal ingestion

capabilities, and tighter integration with enterprise

knowledge management systems.

6.0 RECOMMENDATIONS

One of the key observations during the deployment and

testing of Knowledge Gate was the system’s limited

scalability under high user load, primarily due to its current

synchronous execution model. In the existing architecture,

each document ingestion request—whether a PowerPoint

(.pptx), Word (.docx), or PDF (.pdf) file—is processed

sequentially. This synchronous workflow includes parsing,

semantic chunking, embedding generation, and database

insertion, all performed in a blocking manner. As a result,

when multiple users simultaneously attempt to upload and

integrate documents, the system experiences bottlenecks,

leading to increased latency and diminished responsiveness.

To address this limitation and improve throughput, we

strongly recommend transitioning the ingestion pipeline to an

asynchronous architecture. By decoupling the document

uploading interface from the processing backend and

leveraging asynchronous task queues (e.g., Celery,

RabbitMQ, or AWS SQS with background workers),

ingestion tasks can be offloaded and executed in parallel. This

shift would allow the user interface to remain responsive

while long-running operations such as file parsing and

embedding computation are handled asynchronously in the

background.

34th ASEMEP National Technical Symposium

 7

Furthermore, asynchronous processing enables the use of

concurrent resource management, such as batched vector

insertions and parallel I/O operations, which can significantly

enhance system performance and resource utilization.

Ultimately, adopting an asynchronous ingestion pipeline will

improve scalability, reduce processing delays, and future-

proof Knowledge Gate for broader deployment in multi-user

environments. This architectural evolution aligns with the

best practices in modern AI system design, where non-

blocking operations are essential for real-time responsiveness

and operational efficiency.

7.0 ACKNOWLEDGMENT

We would like to thank all those who contributed, directly or

indirectly, to the development of this work. Their support,

encouragement, and insightful input have been greatly

appreciated throughout the research process. A special thanks

to Mr Alberto Zaldivar for leading this project.

8.0 REFERENCES

[1] T. Brown and e. al, "Language Models are Few-Shot

Learners," Advances in Neural Information Processing

Systems, vol. 33, pp. 1877-1901, 2020.

[2] M. O'Neill and A. Ellis, "Enterprise Document Usage

Trends," International Journal of Information

Management, vol. 57, pp. 1021-26, 2021.

[3] J. Karpukhin and e. al, "Dense Passage Retrieval for

Open-Domain Question Answering," Proc. of EMNLP,

p. 6769–6781, 2020.

[4] S. Izacard and E. Grave, "Leveraging Passage

Retrieval with Generative Models for Open Domain

Question Answering," arXiv preprint

arXiv:2007.01282, 2020.

[5] H. Chase and L. Johnson, "LangChain: Modular

Framework for LLM-Powered Applications," GitHub

Repository, [Online]. Available:

https://github.com/hwchase17/langchain. [Accessed

2025].

[6] M. de Vries and e. al, "Haystack: A Framework for

LLM-Augmented Search," GitHub Repository,

[Online]. Available: https://github.com/deepset-

ai/haystack. [Accessed 2025].

[7] S. AG, "AI-Powered Assistants on the Factory Floor,"

Siemens Industrial AI Blog, 2022. [Online]. Available:

https://new.siemens.com/global/en/company/stories/in

dustry/ai-factory-assistants.html.

[8] G. Digital, "Digital Twin and AI in Predictive

Maintenance," GE Reports, 2023. [Online]. Available:

https://www.ge.com/digital/press-releases/digital-twin-

and-ai. [Accessed 2025].

[9] B. Global, "Artificial Intelligence in Manufacturing,"

Bosch Press Center, 2021. [Online]. Available:

https://www.bosch.com/stories/artificial-intelligence-

in-manufacturing/. [Accessed 2025].

[10

]

I. Corporation, "IBM Watsonx Assistant

Documentation," IBM Knowledge Center, 2024.

[Online]. Available:

https://www.ibm.com/docs/en/watsonx. [Accessed

2025].

9.0 ABOUT THE AUTHORS

Sabari Vishnu Jayanthan Jaikrishnan

is a Data Scientist at Western Digital

Storage Technologies Limited

specializing in Machine Learning, Deep

Learning, and Video Analytics projects.

He holds a master’s degree in Information

& Data Science where he researched

Automated Machine Learning and a

bachelor's degree in Electronics &

Communication Engineering.

Jerald Constantino is an associate data

scientist at Western Digital Corporation

Philippines, specializing in machine

vision, machine learning, and generative

AI projects. He holds a Bachelor of

Science in Computer Engineering from

Batangas State University - TNEU and

is currently studying for a Master of

Science in Computer Engineering at Mapúa University.

Jhon Vincent A. Gupo is an

Associate Data Scientist at Western

Digital Storage Technologies for

Operation Excellence. He holds a

bachelor’s degree in computer

science at Laguna State Polytechnic

University – Los Baños.

