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ABSTRACT

This paper presents Knowledge Gate, a state-of-the-art
system that seamlessly integrates user-provided documents
into a large language model (LLM)-powered chatbot’s
knowledge base. Traditional chatbot systems require manual
tuning, data preprocessing, or complex pipeline development
to ingest and utilize new information. Knowledge Gate
eliminates this bottleneck by automating the ingestion,
parsing, and embedding of structured and unstructured
documents, such as PDFs, Word, and PowerPoint files,
directly into the chatbot’s context-aware memory
architecture. Leveraging advanced techniques in natural
language understanding, retrieval-augmented generation
(RAG), and vector-based semantic search, Knowledge Gate
enables dynamic, contextually accurate responses grounded
in user-specific content without retraining the underlying
model. This approach significantly reduces integration effort,
enhances adaptability for domain-specific applications, and
democratizes access to enterprise-level knowledge
automation. Experimental evaluations demonstrate high
relevance scores and accuracy across multiple use cases,
including customer support, technical documentation access,
and knowledge management systems.

1.0 INTRODUCTION

The emergence of Large Language Models (LLMs) has
transformed the landscape of natural language processing
(NLP), enabling human-like dialogue, text summarization,
code generation, and more [1]. Despite their remarkable
capabilities, current LLM-based systems are inherently
limited by static training data and lack mechanisms for
incorporating user-specific or context-specific knowledge on
the fly. This bottleneck has sparked a growing demand for
systems that can dynamically augment LLMs with external
knowledge, especially in enterprise and research settings
where proprietary information is often stored in document
formats inaccessible to traditional chatbot architectures.

To address this challenge, we present Knowledge Gate—an
intelligent document ingestion and knowledge augmentation

framework that enables LLM-powered chatbots to
dynamically integrate user-uploaded files into their
operational context. Knowledge Gate supports three

commonly used document formats: Microsoft PowerPoint
(-pptx), Microsoft Word (.docx), and Portable Document
Format (.pdf). These file types constitute most of the business
and academic documentation, making Knowledge Gate a
practical solution for real-world use cases [2].

The system is designed around a pipeline that combines
document parsing, text extraction, semantic chunking, vector
embedding, and retrieval-augmented generation (RAG).
Upon receiving a document, Knowledge Gate preprocesses
its contents, breaks them into semantically meaningful
segments, and embeds them into a vector database using a
high-dimensional embedding model. During user interaction,
relevant document fragments are retrieved and used as
contextual input to the LLM, significantly improving the
chatbot’s ability to generate accurate and context-aware
responses [3], [4].

Several frameworks have explored retrieval-based
enhancements to LLMs, including systems like LangChain
[5] and Haystack [6]. However, these frameworks often
require significant manual configuration or code-level
integration. Knowledge Gate distinguishes itself by offering
a no-code, automated interface that abstracts away the
underlying complexity, allowing end-users to enrich their
chatbot’s knowledge base simply by uploading supported
files. This design prioritizes usability, real-time performance,
and scalability, making it suitable for both technical and non-
technical stakeholders.

Furthermore, Knowledge Gate ensures that all processing is
carried out with respect to data privacy and organizational
compliance requirements. No document is stored persistently
unless explicitly permitted, and embeddings are confined to
secure, session-specific environments.
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2.0 REVIEW OF RELATED WORK

The integration of user-specific documents into
conversational Al systems has gained momentum in
corporate and industrial environments, particularly within
knowledge-intensive sectors such as manufacturing,
automotive, and high-tech assembly. The motivation lies in
improving operational efficiency, knowledge dissemination,
and decision-making by enabling intelligent agents to access
domain-specific documentation in real time.

Several major corporations have pioneered the use of
retrieval-augmented generation (RAG) and document-based
augmentation techniques in manufacturing settings. For
instance, Siemens has implemented Al systems that ingest
technical manuals, maintenance protocols, and compliance
documentation to assist engineers on the production floor
through intelligent assistants [7]. These systems leverage
semantic search and contextual response generation to help
technicians diagnose issues faster and reduce machine
downtime.

Similarly, General Electric (GE) has integrated natural
language interfaces with digital twins and process
documentation. Their systems parse extensive equipment
documentation and operational guidelines to support real-
time troubleshooting and predictive maintenance in industrial
environments [8]. GE’s approach exemplifies the potential
for LLM-augmented document systems to become part of
mission-critical infrastructure.

In the automotive industry, Bosch and Volkswagen have
deployed Al solutions to improve training and operations by
embedding engineering documents, manuals, and SOPs into
virtual assistants used in assembly lines [9]. These assistants
can respond to technician queries by retrieving and presenting
information from documents that would otherwise require
manual lookup, thereby reducing human error and improving
productivity.

Another noteworthy example is IBM Watsonx Assistant,
which allows enterprises to upload documents in formats
such as Word and PDF to create a searchable and interactive
knowledge base for internal operations [10]. Used across
sectors—including finance, telecom, and manufacturing, this
system shares conceptual similarity with Knowledge Gate in
its use of semantic chunking, vector embeddings, and
retrieval mechanisms.

In terms of open-source tooling, the Haystack framework by
deepset.ai has been adopted in various manufacturing use
cases where process manuals, ISO certifications, and
compliance documents must be queried through
conversational agents [6]. This framework allows integration

of PDF and DOCX documents and uses dense vector search
to deliver contextual responses to production staff.

These industry applications validate the core design of
Knowledge Gate, which aims to democratize this capability
by offering a lightweight, real-time solution tailored for
SMEs and R&D environments. While enterprise solutions
often require extensive customization and infrastructure,
Knowledge Gate emphasizes usability and immediate value
by enabling LLMs to ingest PowerPoint, Word, and PDF files
without specialized configuration.

3.0 METHODOLOGY
This study proposes an automated data ingestion pipeline
designed to convert user-uploaded documents into a
structured format suitable for integration with a large

language model (LLM)-powered knowledge base.

3.1 Downloader / Interpreter / Ingester:

The process begins when users upload document files—
specifically Microsoft Word (.docx), PowerPoint (.pptx), and
Portable Document Format (.pdf) files—via a web-based
front-end interface. These uploaded documents are stored in
a temporary front-end database for preprocessing. Each
document is then programmatically parsed into individual
pages, and each page is rendered as a high-resolution image
to facilitate accurate text extraction.

Subsequently, these images are passed through an ingestion
engine to convert the visual content into machine-readable
text. The extracted text for each page is compiled and tagged
with relevant metadata, including document ID, page
number, and upload timestamp. This structured text data,
along with its associated metadata, is then uploaded and
securely stored in a designated Amazon S3 bucket for
persistent storage and future retrieval.

Following storage, a batch processing mechanism triggers the
ingestion of this data into the LLM’s vectorized knowledge
base. The ingestion process involves tokenization,
embedding generation, and semantic indexing to allow
context-aware retrieval during user queries. This integration
ensures that the knowledge base is enriched with the most
recent and relevant user-uploaded content.

Finally, upon successful ingestion of the processed content
into the LLM’s knowledge base, an automated
acknowledgment email is dispatched to the user. This email
serves as confirmation that their documents have been
successfully processed and assimilated into the intelligent
system.



34t" ASEMEP National Technical Symposium

User Uploads
- Word/PowerPoint//
| PDF Files
4 " N\
Frontend
Storage / DB
- A g |
‘ZI Convert Pages
to Images
4 A N
TX Interpret Images
| as Text
e . N
Save Text Files &
s Metadata to S3
4 ‘ N\
Ingest into LLM
Knowledge Base

.

Fig. 1. Workflow diagram of knowledge gate in action.

This methodology offers a scalable, automated, and user-
transparent  framework  for  real-time  knowledge
augmentation in enterprise LLM applications.

3.2 Auto Question and Answering

Auto QnA is a core submodule of Knowledge Gate that,
given a target knowledge-graph identifier (kg_id), produces
both explicit (“Level 1) and implicit (“Level 2”) question—
answer pairs for downstream truth-prompting. Figure X
shows the end-to-end flow.
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Fig. 2. Workflow diagram of auto question answering

3.2.1 Inputs
e kg id: Unique identifier of the knowledge graph or
document segment
e ni: Number of Level 1 (explicit fact) queries to
generate
e n2: Number of Level 2 (implicit fact) queries to
generate

3.2.2 Inputs Chunk Extraction

1. Source material (e.g., text, OCR’d image) is
tokenized into discrete “chunks.”

2. Select up to the first 50 chunks tagged with the target
kg id.

3.2.3 LLM Prompting

Two separate system prompts are issued to an LLM, each
operating over the same set of retrieved chunks:

e Level 1 System Prompt
“Using exactly one chunk, generate an explicit-fact question
and its answer. The question should retrieve a single fact
verbatim from that chunk.”
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e Level 2 System Prompt
“Using at least two distinct chunks, generate an implicit-fact
question and its answer. The answer must be supported by
synthesizing information across all selected chunks.”

3.2.4 Integrity Checks
Each candidate QnA pair is validated before acceptance:

o Levell

1. Exactly one chunk id is referenced, and it matches
the input kg_id.

2. The answer appears verbatim (or as a direct fact)
within that chunk.

e Level2

1. At least two distinct chunk ids are referenced; all
must match the input kg_id.

2. The answer is substantiated by information present
in each referenced chunk.

If any check fails, the pair is discarded, and the corresponding
prompt is reissued. This loop continues until the module has
produced n: valid Level 1 pairs and n- valid Level 2 pairs.

3.2.5 Outputs

A collection of structured QnA records, each comprising:
“kg _id, query type (L1 or L2), question_text, answer_text,
[list of chunk_id]”

Example
-L1:

e Question: “What is the capital of France?”
e Answer: “Paris”
e  Chunk IDs: [42]

e Question: “Why is Paris considered France’s
primary cultural hub?”

e Answer: “Because it contains the highest density of
national museums, architectural landmarks, and
historical archives across multiple regions.”

e  Chunk IDs: [42, 47]

By enforcing these prompts and integrity checks, Auto QnA
guarantees that every generated pair is both syntactically

valid and semantically grounded in the source data.

3.3 Truth Prompt Pairs Evaluation
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Fig. 3. Truth Prompt Pair High Level Architecture. The Agent Grader
evaluates the General Agent’s response against the expected answer.

The Truth Prompt Pair (TPP) Evaluation pipeline is designed
to support automated response quality monitoring for LLM-
based systems. It enables structured evaluation of model-
generated outputs by comparing them against predefined
expected answers. As depicted in Fig. X, the system
architecture consists of two core components: the Keyword
Weights Module and the Truth Prompt Pair API. The
Keyword Weights Module is responsible for dynamically
computing and updating keyword importance across the
knowledge base, while the TPP API enables automated
evaluation of LLM responses through a structured interaction
between the General Agent, the Agent Grader, and the
Knowledge Base. The following sections provide a detailed
exposition of these core components.

3.3.1 Keyword Weights

An asynchronous text processing pipeline was developed to
compute weighted keyword representations using
lemmatization and Term Frequency—Inverse Document
Frequency (TF-IDF) vectorization. Raw textual data was first
normalized by removing punctuation and special characters
using regular expressions. Each cleaned chunk was then
lemmatized in two sequential passes using the
WordNetLemmatizer, initially with the part-of-speech
parameter set to noun and subsequently to adjective. This
dual-stage lemmatization ensured consistent reduction of
words to their canonical forms, improving feature quality.
Following lemmatization, the TfidfVectorizer was employed
to convert the processed text into numerical vectors. The TF-
IDF value for a term ¢ in a document d, within a corpus D,
was calculated using the following formulation:

TF — IDF(t,d,D) = TF(t,d) X IDF(t,D)

Where:
fra

TF(t,d) = =——
( ) Zt’edft’,d
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IDF(t,D) = log (

15 [deDted)]

As described in Eq. 1, f4 represents the frequency of term ¢
in document d, and N denotes the total number of documents
in the corpus. The TF component captures term relevance
within a document, while the IDF component down-weights
terms that appear frequently across multiple documents, thus
emphasizing more discriminative keywords. The final output
is a keyword-weight dictionary, mapping each term to its
computed TF-IDF score. The entire process was designed to
run asynchronously to ensure scalability and responsiveness,
and operational metrics were logged for performance
monitoring.

Raw Chunk Operators monitored the rotating parts for excessive vibrations during machine operation.

Lemmatized Chunk Operator monitor the rotating part for excessive vibration during machine operation,

Fig. 4. Lemmatization Example in Manufacturing Context. This figure
illustrates the transformation of a raw text chunk into its lemmatized form.

Fig. 4 illustrated the application of this pipeline in a
manufacturing domain. Consider the following example text
chunk extracted from a production log:

Raw chunk: “Operators monitored the rotating parts for
excessive vibrations during machine operation.”

The preprocessing begins with lemmatization, which
standardizes words to their base or dictionary form. After
lemmatizing the text first as nouns and then as adjectives, the
resulting chunk is:

Lemmatized chunk: “Operator monitor the rotating part for
excessive vibration during machine operation.”

This transformation reduces morphological variance (for
example, “Operators” to “Operator”, “vibrations” to
“vibration”) and improves consistency in token
representation across similar documents.

Subsequently, the TF-IDF vectorizer assigns importance
scores to each term within a corpus of similar maintenance
logs or quality reports. For instance, if the term “vibration”
appears frequently in this document but rarely across the
entire corpus, its TF-IDF score will be relatively high,
indicating its discriminative relevance. Conversely, generic
terms like “machine” or “operation”, which are common
across documents, will receive lower scores.

Mathematically, the TF-IDF weight for the term “vibration”
in this document is computed as:

TF — IDF ("vibration") = TF (vibration)

x log ( )

1 + DF ("vibration")

Where N is the total number of documents in the corpus and
DF(“vibration”) is the number of documents containing the
term “vibration.”

This method ensures that domain-specific keywords such as
“vibration,” “rotating,” or “overheating” are emphasized in
downstream applications like automated diagnostics,
keyword-based retrieval, or LLM prompt evaluation in
manufacturing support systems.

3.3.2 Truth Prompt Pair API

The Truth Prompt Pair (TPP) API is a critical component of
the system pipeline, designed to evaluate the performance of
the General Agent following the ingestion of new knowledge
into the Knowledge Base. This pipeline ensures that only
high-quality, semantically accurate content is retained for
downstream interaction. Prior to permanently storing newly
ingested knowledge, the TPP API performs validation to
verify that the General Agent can produce accurate and
contextually relevant responses using the updated
knowledge. The outcome of this evaluation determines
whether the knowledge is approved for active use or flagged
for rejection.

As illustrated in Fig. X, the system processes a combination
of user-provided and auto-generated question—answer (Q&A)
pairs. These Q&A pairs originate from the Knowledge Gate
UI and the Auto-Q&A Pipeline, respectively. Each question
is forwarded to the General Agent, which generates a
corresponding response based on the current state of the
knowledge base. The generated response is then assessed by
the Agent Grader, a dedicated evaluation module that
compares the response against the expected answer.

The output of the evaluation process comprises three key
elements. First, each response generated by the General
Agent is assigned a classification label based on its alignment
with the expected answer. The classification falls into one of
four categories: (i) Exact, indicating the response fully
matches or captures the intended meaning of the expected
answer; (ii) Superset, where the response is correct but
includes additional information; (iii) Subset, denoting a
partially correct response that lacks essential details; and (iv)
Misaligned, representing responses that deviate significantly
from the expected answer or contain semantic
inconsistencies. Second, the evaluation includes a confidence
score, which quantitatively reflects the overall quality and
reliability of the generated response. Finally, a justification is
provided to explain the reasoning behind the assigned
classification, offering transparency and interpretability in
the decision-making process.
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Upon completion of the evaluation, a summary email is sent
to the user, presenting the original Q&A pair, the General
Agent’s response, its classification, and the accompanying
justification. If the user approves the evaluation result, the
corresponding data is permanently committed to the
knowledge base, thereby enabling interactive querying
through the General Agent. Conversely, if the user rejects the
evaluation, the ingested knowledge is marked as rejected in
the backend, and access to this data is restricted from agent-
level interactions.

This human-in-the-loop validation framework ensures robust
quality control and accountability, safeguarding the integrity
of the knowledge base and the reliability of the
conversational agent’s outputs.

4.0 RESULTS AND DISCUSSION

Interpretation Phase

The interpretation phase involves semantic parsing and
contextual understanding of each page. Using 5 parallel
interpreter instances, we were able to process all 65 pages in
280 seconds, which translates to an average of ~5.23 seconds
per page. This performance metric serves as a baseline for
projecting system throughput under increased loads.

Ingestion Phase

Post-interpretation, the pipeline stores both the content and
associated metadata (1:1 ratio) into an S3-compatible object
store. This amounts to 130 individual uploads for 65 pages.
Using a single ingestion instance, the total ingestion time was
measured at 400 seconds, averaging ~3.08 seconds per object
(or ~6.15 seconds per page, accounting for both content and
metadata).

Given the I/0O-bound nature of this phase, parallelization
yields significant potential benefits. As with interpretation,
increasing the number of ingestion workers from 1 to 10 is
expected to reduce ingestion time by an order of magnitude,
assuming minimal network or disk I/O contention.

Scalability Plan

Based on these observations, we propose scaling the system
to 10 interpreter instances and 10 ingestion instances for
production-grade throughput. This configuration is projected
to handle tons of files, achieving our target for high-volume
document processing within a practical operational window..

5.0 CONCLUSION

Knowledge Gate represents a significant advancement in the
integration of dynamic, user-provided knowledge into LLM-
powered conversational systems. By enabling the ingestion

of commonly used document formats—PowerPoint, Word,
and PDF—into a chatbot’s knowledge base, the system
bridges a critical gap between static pretrained models and
the ever-evolving informational needs of users. Through
automated document parsing, semantic segmentation, and
retrieval-augmented generation, Knowledge Gate empowers
conversational agents to deliver contextually rich, accurate,
and personalized responses in real time.

While the current synchronous processing model presents
performance limitations under high concurrency, plans to
migrate to an asynchronous architecture aim to ensure
scalability and responsiveness as the system scales. This
enhancement will position Knowledge Gate as a robust and
production-ready solution for industries and organizations
that require adaptive, document-aware Al interfaces.

In an era where timely access to domain-specific knowledge
is a competitive differentiator, Knowledge Gate sets a
forward-looking precedent for how LLMs can be transformed
into intelligent, user-augmented assistants capable of real-
time learning and contextual reasoning. Future work will
explore expanded file type support, multimodal ingestion
capabilities, and tighter integration with enterprise
knowledge management systems.

6.0 RECOMMENDATIONS

One of the key observations during the deployment and
testing of Knowledge Gate was the system’s limited
scalability under high user load, primarily due to its current
synchronous execution model. In the existing architecture,
each document ingestion request—whether a PowerPoint
(.pptx), Word (.docx), or PDF (.pdf) file—is processed
sequentially. This synchronous workflow includes parsing,
semantic chunking, embedding generation, and database
insertion, all performed in a blocking manner. As a result,
when multiple users simultaneously attempt to upload and
integrate documents, the system experiences bottlenecks,
leading to increased latency and diminished responsiveness.

To address this limitation and improve throughput, we
strongly recommend transitioning the ingestion pipeline to an
asynchronous architecture. By decoupling the document
uploading interface from the processing backend and
leveraging asynchronous task queues (e.g., Celery,
RabbitMQ, or AWS SQS with background workers),
ingestion tasks can be offloaded and executed in parallel. This
shift would allow the user interface to remain responsive
while long-running operations such as file parsing and
embedding computation are handled asynchronously in the
background.



34t" ASEMEP National Technical Symposium

Furthermore, asynchronous processing enables the use of
concurrent resource management, such as batched vector
insertions and parallel I/O operations, which can significantly
enhance system performance and resource utilization.

Ultimately, adopting an asynchronous ingestion pipeline will
improve scalability, reduce processing delays, and future-
proof Knowledge Gate for broader deployment in multi-user
environments. This architectural evolution aligns with the
best practices in modern Al system design, where non-
blocking operations are essential for real-time responsiveness
and operational efficiency.
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