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ABSTRACT

The limitations of conventional control systems are becoming
more evident as manufacturing process requirements evolve,
driven by increasingly complex product requirements and
stricter product quality standards. This paper presents an
integrated smart automation system that combines Industrial
Internet of Things (110T) technology with batch management
capabilities to address these challenges. The study uses
DMAIC methodology to systematically guide the system
enhancement efforts combining regression analysis—
specifically the coefficient of determination (R-squared or
R2)—to assess the strength of correlation between key
process variables. The implementation resulted in 17%
increase in oven capacity and 100% improvement in data
accuracy. Furthermore, the system significantly reduced
product exposure risk during oven malfunctions and doubled
end-user awareness. This integration can effectively
overcome conventional control limitations while enhancing
operational efficiency, product protection, and process
reliability in complex manufacturing environments. This
work contributes to the advancement of smart manufacturing
practices in thermal processing applications.

1.0 INTRODUCTION

Thermal processing such as annealing is widely used in
manufacturing industries, especially in the semiconductor
and electronics sectors. Annealing is an important process
that helps reduce stress inside a metal or plastic parts, which
can affect the performance of the final product. This is done
by heating the material to a high temperature—below its
melting point—for a certain time, allowing the atoms to move
and form new crystal structures'.

The annealing process, as illustrated in Fig. 1, is characterized
by a specific temperature profile over time. It begins with a
controlled warm-up phase, allowing the material's
composition to gradually adjust to rising temperatures and
preventing abrupt atomic displacement. This is followed by
the baking phase, where the material is held at a defined
temperature for a specific duration to meet the required stress
relief specifications. Finally, the cool-down phase allows the
material to slowly return to normal conditions, enabling the

atoms to settle into a more stable arrangement after heat
treatment.
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Fig.1 Annealing Process

Despite its critical role, the conventional implementation of
annealing in manufacturing environments often falls short in
addressing increasingly complex product requirements and
ensuring reliable process control. This limitation largely
arises from the system's heavy reliance on human judgment,
such as operator-dependent control of ovens, manual data
entry for traceability, and limited or no integration with
available software applications. These factors not only reduce
operational efficiency but also increase the risk of human
error and data inconsistency.

Moreover, failure to promptly identify equipment
malfunctions—such as those involving blower fans, heating
elements, thermocouple sensors, or interlocks—can lead to
process disruptions, product defects, and increased
operational costs. The lack of integrated monitoring and data
analytics prevents timely decision-making and increases the
risk of human error.

There is a clear need for an intelligent annealing system that
incorporates IloT-enabled real-time monitoring, smart
automation, and centralized batch management. It enhances
system reliability, improve process control, and support
efficient, data-driven operations in high-precision
manufacturing environments.

Many researchers from various industries are exploring ways
to improve or automate traditional methods, particularly in
the annealing process. There is a related study that focuses on
reducing costs effectively by implementing smart systems in
thermal processing, thereby minimizing the need for direct
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operator intervention and enhancing both reliability and
consistency. The study utilized a Fuzzy-PlI with ON/OFF
logic control that automates the entire heat treatment process.
It used MATLAB/Simulink to test the entire system which
includes the control unit, algorithm, sensors, and drive
circuits. The results of the study confirm that the automated
heat treatment is reliable, as it achieves material hardness
with only a *2HV (Vickers Hardness) difference from
traditional process. This is useful in cost reduction and
decrease in operator dependency?.

2.0 REVIEW OF RELATED WORK

Refer to 1.0 Introduction

3.0 METHODOLOGY

Originally, the annealing oven was equipped with a single
thermocouple sensor located near the HEPA filter—outside
the actual baking chamber. As a result, the oven's display and
control system relied solely on this sensor, which posed a
significant limitation in accurately reflecting in-chamber
temperature conditions. This makes real-time, visual
monitoring of the temperature profile critical for process
stability and product quality.

In the original setup, as shown in Fig.2, technicians and
operators were required to manually configure a standalone
data logger to monitor oven temperature twice daily — every
start of shift. This involved physically connecting the device
to the oven and positioning it in a suitable location inside the
chamber to capture relevant thermal data. Once the baking
cycle was complete, technicians had to extract the logged
data, typically via USB or SD card, and manually input the
temperature readings into an Excel spreadsheet or logbook.
This process was not only time-consuming but also
introduced a high risk of human error, including misreading
values, mistyping entries, or misplacing data files, which
could compromise traceability and process validation.
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additional thermocouple sensors within the chamber and
integrating an additional high-temperature interlock, as
illustrated in Fig.3, for improved redundancy and safety.
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Fig.3 Additional Thermocouple sensor (yellow-circle) and additional high
temp interlock (yellow-square). Original thermocouple sensor (green-circle)
and original high temp interlock (green-square)

Building upon this hardware upgrade, the first phase of the
study involved implementing an Industrial Internet of Things
(IToT)-based solution. The first phase is the introduction of
IIoT method where the analog data from sensors are being
translated and uploaded to web application where users can
monitor and set controls.

In Fig.4, the total of 9 thermocouple sensors (1 built-in and 8
additional) are connected through Moxa I/O Logik to collect
analog temperature signals and send it to server computers or
controllers prior uploading to a cloud database. The web
application then retrieves the data to provide real-time visual
monitoring system of temperature profiles, complete with
user alert notification when temperature exceeds pre-defined

control limits.
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Fig.2 Original temperature monitoring, per shift basis.

The core issue arises when key oven components
malfunction, such as a blower fan failure, non-functioning
heating elements, a faulty interlock, or a sensor error. To
mitigate this risk, the system was upgraded by installing 8

Sensor Signals

Fig.4 Phasel: Translation of analog signals from oven sensors to web
applications (11oT)

To validate the performance of the I1oT-enabled monitoring
system, a regression analysis was conducted comparing the
sensor data captured through the in-chamber thermocouple
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network with the historical readings obtained using the
manual data logger. In Fig. 5 and Table 1, it shows the
regression analysis between the in-chamber thermocouple
sensor and the manual data logger readings. It yields an R-
squared (R?) value of >0.98. This indicates a near-perfect
linear correlation, validating the accuracy and reliability of
the sensor data captured through the 10T system.

Summary of Fit
RSquare

0.990405
RSquare Adj 0990298
Root Mean Square Error 2.942006
Mean of Response 148,889
Observations (or Sum Wats) 91

Fig.5 Regression analysis using coefficient of determination (R-squared or
R?). Ave. of 8 chamber sensors (y-axis) vs Ave. of 8 sensors from data logger
(x-axis)

Table 1. Coefficient of determination (R-squared or R?) by
temperature sensors

In-Chamber
Sensor1 | Sensor2 | Sensor3 | Sensor4 | Sensor5 | Sensor6 | Sensor7 | Sensor8
Sensorl | 99.81%
Sensor2
Sensor3
Sensor4
Sensors
Sensoré
Sensor7
Sensor8

99.24%

99.67%

98.41%

Data Logger

99.67%

98.28%

99.96%

99.28%

Following the successful implementation of lloT-enabled
thermal monitoring in Phase 1, the second phase of this study
focused on advancing operational efficiency through the
integration of smart automation and batch management
capabilities as shown in Fig.6.
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Fig.6 Phase2: Smart automation with batch management

One key component is the Batch Builder Manager, an in-
house developed application designed to automate the
batching process with built-in error-proofing features. It
enforces  restrictions  based on  product-specific

requirements—such as predefined recipes or
configurations—to ensure accurate and compliant batch
execution. In the original setup, batching relied entirely on
operator judgment, with no foolproof mechanisms in place.
Critical batching data used for traceability was manually
logged in Excel spreadsheets, making it prone to human error
and mistyping. The Batch Builder application now uses a
barcode scanner to log data directly into the system. Once a
product is scanned, its corresponding requirements are
automatically displayed. If the scanned product does not
match the current batch specifications, the system prompts an
error—providing operators with an additional layer of
verification and improving process awareness.

To complement this, a Smart Automation Application was
developed to provide a user-friendly interface, allowing
operators to process parts more efficiently. Unlike the
traditional oven interface with its small display and manual
recipe selection—where oven control was highly operator-
dependent—this application simplifies recipe selection and
execution. It communicates with the Batch Builder Manager
to automatically identify the current batch and apply the
corresponding recipe or configuration. Additionally, the
Smart Automation Application can integrate with other
Manufacturing Execution System (MES) tools, particularly
the 11oT web application, to enable real-time data sharing,
data uploading, and centralized control.

To fully automate operations, communication pathways were
established between the oven, the batch builder system, and
associated I1oT and MES platforms. This integration enabled
the elimination of manual inputs and significantly improved
operational efficiency. The application was designed with
ease-of-use in mind to encourage operator engagement and
reduce training complexity.

This two-phase methodology enabled the transformation of
the annealing process from a manually intensive system to a
digitally connected and automated environment. The
integration of smart systems not only addressed existing
operational risks but also laid the foundation for scalable
process improvements.

4.0 RESULTS AND DISCUSSION

This study successfully improved the efficiency and
reliability of the annealing process by replacing manual
systems with lloT-based monitoring and smart automation.
The implementation was done in two phases and led to major
improvements in oven usage, data accuracy, operator
workload, and system control.

To ensure proper thermal processing conditions, temperature
data through web application is continuously monitored and
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validated. The latest temperature profile as shown in Fig.7—
verified to be free from any sensor anomalies or machine
parts malfunctions—serves as the primary reference for
operators during daily loading activities. This verified profile
ensures that each batch begins under optimal thermal
conditions, minimizing the risk of product deviation.
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Fig.7 Real-time temperature profile from lloT application

Furthermore, by eliminating the use of manual data loggers—
previously requiring 4 hours per day—the system achieved a
17% increase in oven capacity, contributing significantly to
production efficiency.

Overall, the integrated solution transformed the annealing
process from a manual, error-prone workflow into a digitally
connected, reliable, and efficient operation. A summary of
these improvements is shown in Table 2, highlighting the
measurable gains achieved through this digital
transformation initiative.

Table 2. Benefits of the Project

Metric
Oven Capacity
Data Accuracy
Fault Detection
Traceability

Improvement
17% increase by eliminating manual logging
100% improvement (R*> > 0.98)
Real-time alerts, safer operations
Barcode-based, structured and validated
2x improved due to guided interface
(Automated prompts, web Ul)

Response Time

5.0 CONCLUSION

The implementation successfully addressed the limitations of
conventional control systems by significantly reducing
human error, improving data consistency, and enabling
proactive  anomaly  detection. Regression  analysis
demonstrated the high accuracy and reliability of the sensor
data captured through the IloT system, validating the
approach's effectiveness in complex manufacturing
environments. These results confirm that 10T integration
represents a viable and valuable enhancement to thermal
processing operations, with quantifiable benefits to
operational efficiency, product quality, and manufacturing
capacity.

6.0 RECOMMENDATIONS

This paper recommends further enhancement of the system
algorithm by incorporating predictive maintenance. In the
manufacturing industry, certain machines may become
sources of delay due to the need for maintenance, calibration,
machine repair, or out-of-control signals from sensors. The
system can proactively redirect processes away from high-
risk or underperforming machines, reducing downtime and
improving yield.
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