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ABSTRACT 

 

Data analytics plays a vital role in modern manufacturing, 

where companies like Western Digital generate thousands of 

data points daily. However, a significant portion of this data 

remains underutilized due to manual, time-consuming 

analysis processes that require expert knowledge to extract 

actionable insights. While Generative AI platforms like 

ChatGPT offer strong analytical capabilities, they are not 

suitable for handling confidential enterprise data. 

 

To address this, a domain-specific Generative AI system was 

developed and deployed within a secure environment. The 

system integrates natural language interaction with 

automated agents for exploratory data analysis, anomaly 

detection, and insight generation. 

 

The solution shows strong potential to reduce manual effort 

by up to 80%, consistent with efficiency gains reported in 

prior studies. It also enhances decision-making speed and 

expands access to insights across operational teams. Finally, 

this deployment represents a critical step toward 

democratizing AI-assisted data exploration, with efforts 

underway to enable adoption across all departments. 

 

 

1. 0 INTRODUCTION 

 

In the era of Industry 4.0, data analytics has become a critical 

enabler in manufacturing, supporting optimization, root 

cause analysis, and rapid decision-making across the 

production lifecycle. As processes become increasingly 

complex and data volumes grow exponentially, the ability to 

transform raw data into meaningful insights is essential for 

maintaining competitiveness and operational efficiency. In 

semiconductor assembly, where precision, yield, and 

turnaround times are tightly coupled with process stability, 

timely and accurate interpretation of data holds direct 

implications on product quality and throughput. 

 

In large-scale manufacturing environments such as Western 

Digital Corporation (WDC), vast volumes of process and 

quality data are generated daily from equipment logs, sensor 

networks, and quality inspections. However, this data 

remains underutilized due to the complexity of extracting 

actionable insights. Managers, engineers, and decision-

makers are often hindered by the need for specialized 

statistical expertise, manual analysis efforts, and delays in 

identifying key anomalies or process deviations. This 

bottleneck in data-to-decision flow slows down corrective 

actions, reduces operational agility, and impacts yield and 

productivity. 

 

 

 
 

Fig. 1. Manual Data Analysis Workflow. The current workflow involves data 

collection, manual analysis using spreadsheets and scripts environment, and 
report generation. 

 

Currently, engineers and analysts are conducting their work 

through manual processes as depicted in Fig. 1. For instance, 

analysts often rely on spreadsheet-based tools such as 

spreadsheet or scripting languages like Python and R to 

perform data cleansing, compute summary statistics, and 

generate visualizations. These tasks, though routine, are time-

consuming and prone to human error, especially when 

dealing with large-scale datasets from heterogeneous sources. 

Anomaly detection typically requires manual threshold-

setting or retrospective analysis using static control charts, 

making real-time responsiveness infeasible. Root cause 

analysis, when anomalies are detected, often involves 

iterative hypothesis testing or laborious correlation checks 

across multiple variables. 

 

This labor-intensive workflow imposes significant delays 

between data collection and actionable insight generation. 

Furthermore, it limits the accessibility of advanced analytics 

to a small group of experts, thereby excluding operators, 

process engineers, and other stakeholders who could benefit 

from real-time data intelligence. The lack of standardized 

automation and intuitive tools inhibits the widespread 
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adoption of data-driven practices, reducing the effectiveness 

of continuous improvement initiatives. 

 

However, advancements in technology offer promising 

solutions to these challenges. For example, previous attempts 

to streamline data analysis have involved Business 

Intelligence (BI) dashboards1 and statistical process control 

systems2. While useful, these tools often require domain 

expertise and manual configuration, limiting their 

accessibility to non-specialists and reducing their 

effectiveness in uncovering hidden patterns or real-time 

anomalies. Recent efforts incorporating machine learning 

(ML) have shown promise, but many still lack interpretability 

and ease of use, especially in fast-paced industrial 

environments3. While recent advancements in generative AI 

offer promising capabilities for automating data analysis, 

widely known platforms such as ChatGPT, Gemini, and 

others are not suitable for handling confidential or internal 

company data due to privacy and security concerns. 

 

 

 
 

Fig. 2. Automated Data Insights Workflow. The solution streamlines data-
to-decision flow via an AI-driven user interface, featuring Auto-EDA, Auto-

AD, and Data Insights agents.  

 

Thus, there is a growing need for domain-specific, privately 

hosted Generative AI (GenAI) systems that can safely operate 

on internal datasets without exposing them to third-party 

services. To address these limitations, the proponents 

introduced Data Insights system, an AI-powered analytical 

assistant tailored for semiconductor assembly data. As 

illustrated in Fig. 2, the system combines multi-agents for 

automated exploratory data analysis (Auto EDA), anomaly 

detection (Auto AD), and Data Insights with natural language 

interaction to bridge the gap between raw data and decision-

making. By automatically generating descriptive statistics, 

custom visualizations, trend analyses, and root-cause 

explanations, the agent empowers users across roles and 

expertise levels to rapidly derive insights and take informed 

action. 

 

The remainder of this paper is organized as follows. Section 

2 reviews related literature on automated data analysis in 

manufacturing. Section 3 describes the methodology behind 

the development of the Data Insights system, including its 

architecture and core components. Section 4 presents results 

and discussion, featuring visual outputs and use cases from 

semiconductor assembly. Section 5 concludes the study by 

highlighting key findings, while Section 6 offers 

recommendations for future enhancements and integration 

into smart manufacturing systems. 

 

 

2. 0 REVIEW OF RELATED WORK 

 

In recent years, ML-driven analytics and advanced AI models 

have been leveraged to accelerate data-driven decision 

making in semiconductor assembly, with studies reporting 

dramatic improvements in throughput, yield, and efficiency4, 

and 5. For example, Hung et al.6 developed a three-phase data-

science framework for semiconductor assembly that uses 

LASSO and stepwise regression to select critical process 

parameters and then apply multiple ML models (neural 

networks, support vector regression, and gradient boosting) 

to predict the extent of die delamination (a leading cause of 

chip failure) from pre-bonding sensor data. Their empirical 

study on actual fab data showed that this framework provides 

“effective delamination prediction” and supports rapid 

troubleshooting (thus shortening cycle times and improving 

yield). In a related defect-detection application, Shen and 

Lee7 use deep learning to improve wafer bin map recognition 

(WBMR) in assembly. They embed a convolutional network 

(Inception CNN) in a defect classification pipeline that 

includes autoencoder–based data augmentation and region 

classification, enabling the system to distinguish systematic 

defect patterns (for example, tool or recipe issues) from 

random noise. By adjusting the anchors with a revised 

Jaccard index and retraining on augmented samples, the 

WBMR accuracy was significantly improved, demonstrating 

how ML can automate pattern recognition in packaging 

inspection and thereby speed up quality-control decisions. 

Similarly, Wang and Chiu8 tackle wire-bonding quality by 

predicting the “shear force” (bond adhesion) before bonding 

takes place. They automatically extract six features from 

probe-mark images and use PCA-transformed features in a 

random-forest classifier; this model identifies bad chips with 

97.92% accuracy before bonding. By catching low-shear-

force die in advance, their approach avoids unnecessary 

bonding steps, saving processing time and cost and hence 

improving overall packaging throughput. These examples 

illustrate how ML-based vision and classification systems 

can make detection faster and more accurate than traditional 

manual or rule-based inspection.  

 

Beyond defect inspection, ML also enables predictive 

maintenance and process optimization to speed decisions. For 

instance, Pradeep et al.9 apply ML to equipment and wafer-

processor sensor data to predict impending wafer or tool 

failures; their models (including random forests, SVMs, and 

gradient boosts) achieve high accuracy (>93% for wafer-

failure prediction). By forecasting failures, the system 

recommends maintenance before breakdowns, thereby 

reducing unplanned downtime and boosting equipment 

utilization (in one study wafer fab tools ran only ~44% of the 
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time before PdM). In effect, the data-driven model reduces 

equipment failure by enabling predictive maintenance and 

increases productivity. A broader survey by Chen et al.4 

confirms that ML models are being deployed in advanced 

process control (APC), virtual metrology, and in-line quality 

control to accelerate feedback and improve yield, noting that 

ML-driven automation is rapidly gaining popularity and 

advancing at a swift pace in semiconductor manufacturing. 

Likewise, Yu et al.10 demonstrate that integrating cross-fab 

data with cloud-based ML tools can drastically shorten new-

product introduction (NPI) cycle time: by automating yield 

management and test-time analysis, ML analytics helped 

expedite yield learning, cut test time, and enhance quality for 

a safe product launch. In their study of lead-frame assembly, 

higher throughput was achieved by using ML-guided 

statistical yield tools on hard/soft bin data and first-fail test 

parameters, which expedited yield learning, test time 

reduction (TTR) and quality enhancement during production 

ramp-up. These findings indicate that ML-driven “decision-

support” at the system level fusing sensor, test, and yield data 

can compress analysis time and provide real-time 

recommendations for process adjustments.  

 

Across these application domains from predictive 

maintenance and scheduling to defect detection and yield 

management, researchers report that ML methods 

consistently enable faster, more accurate decisions. For 

example, Cao et al.11 presents a real-time surface-defect 

detector for chip packages using a YOLOv7 deep network 

enhanced with attention modules; compared to a baseline 

network, their ML model runs ~21.6% faster (and with far 

fewer parameters) while improving detection accuracy by 

1.39% on a custom packaging-defect dataset. This sort of 

speed-up is representative: ML systems eliminate 

cumbersome hand-tuned feature extraction, automatically 

optimize across many variables, and operate continuously, so 

that decisions (for example, flagging a fault or triggering a 

maintenance alert) happen nearly instantaneously once 

sufficient data are collected. In each case above, the use of 

supervised or deep learning on historical assembly data has 

translated to dramatic gains. The surveyed literature 

emphasizes that ML-driven models and analytics provide 

real-time monitoring, predictive maintenance, and adaptive 

control that minimize downtime and waste while optimizing 

output. In summary, studies from the past five years show that 

embedding ML into semiconductor assembly whether in 

backend packaging lines or test and NPI flows can slash 

decision latency and error rates. By converting streaming fab 

data into automated predictions and prescriptions, ML 

empowers shop-floor operators and engineers to act more 

quickly and confidently, accelerating semiconductor 

assembly decision cycles and improving product yield and 

quality. 

 

 

3.0 METHODOLOGY 

 

This paper implements a Generative AI-based system that 

automates statistical insight extraction to address manual 

analysis limitations in large-scale manufacturing. The system 

supports natural language queries for performing exploratory 

analysis, anomaly detection, and experiment design without 

coding. This section outlines the system architecture, and its 

core modules (Auto-EDA, Auto-AD, and Data Insights) 

designed to accelerate decision-making in semiconductor 

assembly. 

 

 

3.1  System Overall Architecture 

 

 
 
Fig. 3. Architecture of the AI-Assisted Insight Generation System. The 
architecture illustrates the interaction between the user interface, web server, 

agent classifier, modular agent pipelines, and the underlying database. 

 

Fig. 3 illustrates the overall system architecture of the 

proposed AI-assisted insight generation framework. The 

process begins with user interaction via a web browser, where 

structured data files (such as CSV or Excel) and a natural 

language prompt are submitted. These inputs are transmitted 

to a web server, which functions as the central controller. A 

Prompt-to-Agent Router within the server interprets the 

prompt to determine the user’s intent and dispatches the 

request to the appropriate agent pipeline. For instance, a 

query such as, “Perform data analysis using the attached 

dataset and provide an insight,” would trigger both the Auto-

EDA and Data Insights agents.  

 

Table 1. Description of Processing Agents 

 

Agent name Purpose / Task 

Auto-EDA Performs automated exploratory data 

analysis, including summary statistics, 

visualizations, and data profiling. 

Auto-AD Detects anomalies or outliers in the dataset 

using statistical or machine learning-based 

methods. 

Data Insights Generates contextual insights or natural 

language summaries from the data, based 

on the user’s prompt. 

 

As shown in Table 1, available agents include Auto-EDA, 

Auto-AD, and a general-purpose Data Insights agent. Each 

agent executes its specific task and may interact with a 

backend database that stores knowledge logs, memory, or 



34th ASEMEP National Technical Symposium 
 
 

 4 

previously generated insights. The results are then returned to 

the front-end for user interpretation. This modular 

architecture is extensible, allowing new agents to be 

integrated with minimal modification to the routing logic. 

Detailed descriptions of each processing pipeline are 

provided in the following sections. 

 

 

3.2  Data Insights Agent Pipeline 

 

 

 
 
Fig. 4. System Architecture of the Data Insights Processing Pipeline. The 

architecture illustrates the end-to-end workflow for generating insights from 
structured tabular data using a GenAI model. 

 

As illustrated in Fig. 4, users submit two types of input: a 

structured dataset (in CSV or Excel format) and a natural 

language prompt. The dataset is uploaded and staged via a 

File Transfer Protocol (FTP) server, while the user prompt is 

directly passed to the system. These components are 

combined into a unified API payload for further processing. 

 

Subsequently, the Processing Unit begins with a data 

preprocessing module that performs tasks such as schema 

validation, data type checking, formatting standardization, 

and data cleaning. A prompt engineering template then 

guides the construction of the final prompt issued to the 

GenAI model. The template includes directives for 

standardized table formatting, data visualization using Plotly, 

optional data aggregation, adding graph elements (such as 

legends, axes, and axis labels) and HTML response 

formatting. 

 

Finally, the GenAI model receives the processed input and 

generates an HTML-formatted response. This response is 

forwarded to an Output Handler Server, which acts as a 

temporary storage and transfer layer. The output is then 

parsed by an HTML parser and rendered in the user interface, 

allowing users to view interactive visualizations and textual 

summaries. 

 

This modular architecture supports scalable, low-effort 

insight generation from raw manufacturing data, enabling 

domain experts and non-experts alike to engage with 

analytical outputs without requiring programming. 

 

 

3.3  Automated Exploratory Data Analysis Agent Pipeline 

 

 

 
 
Fig. 5. System Architecture of the Auto Exploratory Data Analysis Pipeline. 
The architecture illustrates the end-to-end workflow for generating 

automated Exploratory Data Analysis from structured tabular data while 

utilizing large language model for generating insights. 

 

As illustrated in Fig. 5, the Auto Exploratory Data Analysis 

(Auto EDA) module follows a structural framework like the 

data insight pipeline, consisting of four main sections: User 

Input, Processing Unit, Generated Response, and Output. The 

distinction lies in the Processing Unit, which is composed of 

four key components.  

 

First, Statistical Analysis computes essential statistical 

measures such as mean, median, standard deviation, and 

skewness. It also analyzes the distributions of Key Process 

Output Variables (KPOVs) and Key Process Input Variables 

(KPIVs), enabling detection of data patterns and emerging 

trends.  

 

Second, Data Visualization provides insightful graphical 

representations through histograms, box plots, scatter plots, 

time series plots, and heatmaps. These visual tools help 

illustrate data distributions and offer statistical summaries to 

enhance interpretation. Third, Process Monitoring focuses on 

evaluating critical manufacturing characteristics. This 

component assesses process capability and stability over 

time, aiding in performance tracking and continuous 

improvement.  

 

Finally, Performance Metrics further evaluate the same 

manufacturing indicators such as AVT, Ni-Thickness, and 
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Flatness to quantify overall performance, ensuring reliable 

benchmarking and supporting long-term optimization efforts.  

 

 

3.4  Automated Anomaly Detection Agent Pipeline 

 

 

 
 
Fig. 6. System Architecture of the Auto Anomaly Detection Pipeline. The 
architecture illustrates the end-to-end workflow for generating automated 

Anomaly Detection from structured tabular data while utilizing large 

language model for generating insights. 

 

Like the Data Insight and Auto EDA modules, the Auto 

Anomaly Detection (Auto AD) system follows the same 

pipeline structure comprising User Input, Processing Unit, 

Generated Response, and Output as shown in Fig. 6. The 

primary distinction lies in the Processing Unit, which is 

tailored to support two key components: Anomaly Detection 

and Causal Inference. The Anomaly Detection component 

identifies data points that deviate significantly from expected 

patterns, capturing rare events, data inconsistencies, or 

hidden trends. To support interpretability, visualizations such 

as histograms are used to display the distribution of anomaly 

scores, highlighting outliers and skewness in the data. Box 

plots are employed to illustrate the range, median, and 

variability of anomaly scores, distinguishing between normal 

(0) and anomalous (1) instances. The Causal Inference 

component aims to determine which features have a genuine 

causal influence on the occurrence of anomalies, as opposed 

to mere correlation. This facilitates a deeper understanding of 

the root causes of anomalous behavior. Visual aids include a 

Feature Importance Chart generated using an isolation forest 

model, which ranks numerical features by their impact on 

anomaly detection. Additionally, a Top 5 Features vs. Index 

Plot visualizes how the most influential numerical features 

vary across data records, aiding in the identification of 

specific anomaly-driving points. For categorical variables, 

the top five influential features are selected based on 

statistical association tests such as Theil’s U, providing 

insights into which categories are most strongly linked to 

anomalous events. 

4.0 RESULTS AND DISCUSSION 

 

This section presents the business impact of the proposed 

system, highlighting efficiency gains achieved through 

deployment. It also discusses test case results demonstrating 

the performance of each core agent, including Data Insights, 

Auto-EDA, and Auto-AD. For testing and public 

dissemination, a publicly available dataset from Kaggle12 

related to the semiconductor industry was used to 

demonstrate the system’s capabilities. 

 

 

4.1 Business Impact and Efficiency Gains 

 

The deployment of the GenAI-powered Data Insights system 

resulted in substantial operational benefits within the WDC 

analytics environment. One of the most notable 

improvements was the significant reduction in manual effort 

required for routine data analysis tasks, including insights 

generation, anomaly detection, and visualization preparation. 

 

In line with recent findings by Uhunoma13, which 

demonstrated that GenAI could reduce work turnaround time 

by up to 80%, the implemented system achieved comparable 

efficiency gains. Specifically, time spent on insight 

generation was reduced compared to the baseline manual 

workflow, which previously involved labor-intensive 

scripting, spreadsheet-based processing, and iterative 

reporting cycles. These efficiency improvements stem from 

the automation of repetitive tasks and the elimination of 

manual scripting, data formatting, and revalidation steps that 

were traditionally required. 

 

Beyond time savings, the system also contributed to 

improved decision latency, enabling faster detection of 

anomalies and more timely corrective actions. This 

enhancement directly supports engineering responsiveness to 

quality excursions and process drifts, thereby strengthening 

yield protection. 

 

The adoption of a natural language interface represents a 

critical step in the ongoing democratization of data analytics, 

accelerating the transition from manual, expert-driven tasks 

to accessible, AI-assisted processes. With this capability, 

non-technical users (including production supervisors and 

quality engineers) can interact with structured data without 

requiring programming or statistical expertise. This has led to 

enhanced cross-functional collaboration and broader data 

utilization in day-to-day operational decision-making. 

 

Finally, by deploying the system within a private and secure 

infrastructure, all internal manufacturing data remained 

confined within organizational boundaries, addressing 

concerns regarding data confidentiality and regulatory 

compliance. This secure deployment approach ensures the 
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solution’s suitability for continuous use in high-sensitivity 

domains such as product engineering, reliability monitoring, 

and process control. 

 

 

4.2 Data Insights Test Cases Result 

 

The Data Insights Agent was utilized to assess whether wafer 

processed through Etching equipment demonstrated 

statistically higher defect rates compared to those processed 

via Lithography or Deposition. The agent responded by 

generating comparative visualizations, including a violin plot 

and a box plot, representing the distribution of defect counts 

across these process stages. 

 

 

 
 
Fig. 7. Defect Count Distribution by Process Stage. This violin plot 

visualizes the spread and frequency of defects across process stages, with 

Etching showing the widest distribution and highest concentration of defects. 
 

The visual evidence in Fig. 7 confirms that wafers subjected 

to the Etching stage exhibited both a wider spread and a 

higher concentration of defects compared to those processed 

in Lithography or Deposition. The agent’s descriptive 

summary highlighted these differences, citing both the 

median and variability of defect counts.  

 

These findings validate the agent’s utility in surfacing 

actionable insights through natural language interaction, 

enabling faster diagnostic assessments without manual 

scripting or statistical programming. The full visual outputs, 

including the box plot and descriptive statistics by stage, are 

provided in Appendix A for reference. 

 

 

4.3  Exploratory Data Analysis Test Cases Result 

 

Using the same wafer dataset provided to the Data Insight 

Agent, the data was subsequently passed to the EDA Agent 

for further exploration and insight generation. The agent 

responded with a comprehensive analysis of the wafer data, 

ranging from a general overview to detailed interactive 

visualizations. 

 

The scatter plot presents individual data points as blue dots, 

each representing a combination of defect count and its 

corresponding temperature. A red line overlays the plot to 

indicate a linear regression fit, providing a straight-line 

approximation of the trend in the data. The associated R² 

value of 0.070 suggests a very weak linear correlation 

between defect count and temperature_C. Additionally, a 

blue dashed line represents a quadratic (second-order 

polynomial) fit, which also yields an R² value of 0.070. This 

indicates that even a more flexible curved model does not 

capture a strong relationship between the two variables. 

Overall, the low R² values from both fits imply that there is 

no significant trend or correlation between defect count and 

temperature in this dataset. 

 

 

 
 

 
Fig. 8. Table of contents generated by the Auto EDA agent, covering an 

overview of the dataset up to interactive visualizations such as box plots and 

scatter plots, where users can select the x- and y-axes of the graphs. 
 

 

 
Fig. 9. Interactive scatter plot generated by the EDA agent. In this example, 

defect_count and temperature_C were selected to examine their correlation. 
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4.4  Automated Anomaly Detection Test Cases Result 

 

Using the same wafer dataset previously provided to the Data 

Insight Agent and EDA Agent, the data was then passed to 

the Auto AD Agent for anomaly detection. The agent 

responded with two main sections: Anomaly Detection and 

Causal Inference, both of which focus on identifying 

anomalies within the data. 

 

The bar chart in Fig. 10. concludes that among the categories, 

Etching shows the highest contribution, accounting for nearly 

50% of the total anomalies detected. This suggests that the 

etching process is a significant source of irregularities within 

the dataset. Deposition and Implantation follow, contributing 

approximately 19% and 16% respectively. Lithography 

accounts for about 13%, while Etch (a possibly mislabeled or 

redundant category) contributes the least at around 3%. These 

insights highlight which stages of the process may require 

closer monitoring or process optimization to reduce the 

occurrence of defects. 
 

 

 
 
Fig. 10. Bar chart showing the contribution of each process_stage to 

anomalies, generated by the Auto AD agent. 

 

 

5.0 CONCLUSION 

 

This paper introduced a GenAI-based Data Insights system to 

streamline data analysis and decision-making in 

semiconductor assembly operations in WDC. By combining 

natural language interfaces with automated modules for Data 

Insight, Auto-EDA and Auto-AD agents, the system 

significantly reduced manual workload and enhanced insight 

accessibility across technical and non-technical users. 

 

The implementation achieved a reduction of approximately 

80% in manual analysis time, while ensuring secure, internal 

handling of sensitive manufacturing data. These results 

demonstrate the feasibility and effectiveness of deploying 

domain-specific GenAI solutions in high-volume, data-

intensive industrial environments. 

 

 

6.0 RECOMMENDATIONS 

 

To extend the impact of the proposed system, several 

enhancements are recommended. First, integrating the 

platform with real-time data sources such as manufacturing 

execution systems or IoT-based sensors would enable 

continuous monitoring and immediate anomaly detection. 

Second, fine-tuning the underlying GenAI model using 

domain-specific data can improve contextual accuracy and 

the relevance of generated insights. Incorporating a user 

feedback mechanism is also advised to support iterative 

prompt optimization and continuous system learning. 

Additionally, enhancing the visualization layer to support 

interactive features, such as drill-downs and cross-variable 

comparisons, would provide users with deeper analytical 

capability. Finally, implementing access control and data 

governance policies will ensure secure and role-based access 

to both raw data and generated reports, thereby maintaining 

compliance with internal security standards. 
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10.0 APPENDIX 
 

Appendix A – Expanded Visualizations for Defect Count 

Analysis using Data Insights Agent 
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Appendix B – Expanded Visualizations of Scatter Plot and 

Correlation Heatmap which is a result of Auto EDA Agent 

 

  
 

 

Appendix C – Expanded Visualizations of the result provided 

by Auto AD Agent showcasing Anomaly Detection and 

Causal Inference section 

 

 
 

 
 

 


