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ABSTRACT

Data analytics plays a vital role in modern manufacturing,
where companies like Western Digital generate thousands of
data points daily. However, a significant portion of this data
remains underutilized due to manual, time-consuming
analysis processes that require expert knowledge to extract
actionable insights. While Generative Al platforms like
ChatGPT offer strong analytical capabilities, they are not
suitable for handling confidential enterprise data.

To address this, a domain-specific Generative Al system was
developed and deployed within a secure environment. The
system integrates natural language interaction with
automated agents for exploratory data analysis, anomaly
detection, and insight generation.

The solution shows strong potential to reduce manual effort
by up to 80%, consistent with efficiency gains reported in
prior studies. It also enhances decision-making speed and
expands access to insights across operational teams. Finally,
this deployment represents a critical step toward
democratizing Al-assisted data exploration, with efforts
underway to enable adoption across all departments.

1.0 INTRODUCTION

In the era of Industry 4.0, data analytics has become a critical
enabler in manufacturing, supporting optimization, root
cause analysis, and rapid decision-making across the
production lifecycle. As processes become increasingly
complex and data volumes grow exponentially, the ability to
transform raw data into meaningful insights is essential for
maintaining competitiveness and operational efficiency. In
semiconductor assembly, where precision, vyield, and
turnaround times are tightly coupled with process stability,
timely and accurate interpretation of data holds direct
implications on product quality and throughput.

In large-scale manufacturing environments such as Western
Digital Corporation (WDC), vast volumes of process and

quality data are generated daily from equipment logs, sensor
networks, and quality inspections. However, this data
remains underutilized due to the complexity of extracting
actionable insights. Managers, engineers, and decision-
makers are often hindered by the need for specialized
statistical expertise, manual analysis efforts, and delays in
identifying key anomalies or process deviations. This
bottleneck in data-to-decision flow slows down corrective
actions, reduces operational agility, and impacts yield and
productivity.
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Fig. 1. Manual Data Analysis Workflow. The current workflow involves data
collection, manual analysis using spreadsheets and scripts environment, and
report generation.

Currently, engineers and analysts are conducting their work
through manual processes as depicted in Fig. 1. For instance,
analysts often rely on spreadsheet-based tools such as
spreadsheet or scripting languages like Python and R to
perform data cleansing, compute summary statistics, and
generate visualizations. These tasks, though routine, are time-
consuming and prone to human error, especially when
dealing with large-scale datasets from heterogeneous sources.
Anomaly detection typically requires manual threshold-
setting or retrospective analysis using static control charts,
making real-time responsiveness infeasible. Root cause
analysis, when anomalies are detected, often involves
iterative hypothesis testing or laborious correlation checks
across multiple variables.

This labor-intensive workflow imposes significant delays
between data collection and actionable insight generation.
Furthermore, it limits the accessibility of advanced analytics
to a small group of experts, thereby excluding operators,
process engineers, and other stakeholders who could benefit
from real-time data intelligence. The lack of standardized
automation and intuitive tools inhibits the widespread
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adoption of data-driven practices, reducing the effectiveness
of continuous improvement initiatives.

However, advancements in technology offer promising
solutions to these challenges. For example, previous attempts
to streamline data analysis have involved Business
Intelligence (BI) dashboards® and statistical process control
systems?. While useful, these tools often require domain
expertise and manual configuration, limiting their
accessibility to non-specialists and reducing their
effectiveness in uncovering hidden patterns or real-time
anomalies. Recent efforts incorporating machine learning
(ML) have shown promise, but many still lack interpretability
and ease of use, especially in fast-paced industrial
environments®. While recent advancements in generative Al
offer promising capabilities for automating data analysis,
widely known platforms such as ChatGPT, Gemini, and
others are not suitable for handling confidential or internal
company data due to privacy and security concerns.
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Fig. 2. Automated Data Insights Workflow. The solution streamlines data-
to-decision flow via an Al-driven user interface, featuring Auto-EDA, Auto-
AD, and Data Insights agents.

Thus, there is a growing need for domain-specific, privately
hosted Generative Al (GenAl) systems that can safely operate
on internal datasets without exposing them to third-party
services. To address these limitations, the proponents
introduced Data Insights system, an Al-powered analytical
assistant tailored for semiconductor assembly data. As
illustrated in Fig. 2, the system combines multi-agents for
automated exploratory data analysis (Auto EDA), anomaly
detection (Auto AD), and Data Insights with natural language
interaction to bridge the gap between raw data and decision-
making. By automatically generating descriptive statistics,
custom visualizations, trend analyses, and root-cause
explanations, the agent empowers users across roles and
expertise levels to rapidly derive insights and take informed
action.

The remainder of this paper is organized as follows. Section
2 reviews related literature on automated data analysis in
manufacturing. Section 3 describes the methodology behind
the development of the Data Insights system, including its
architecture and core components. Section 4 presents results
and discussion, featuring visual outputs and use cases from
semiconductor assembly. Section 5 concludes the study by
highlighting key findings, while Section 6 offers

recommendations for future enhancements and integration
into smart manufacturing systems.

2.0 REVIEW OF RELATED WORK

In recent years, ML-driven analytics and advanced Al models
have been leveraged to accelerate data-driven decision
making in semiconductor assembly, with studies reporting
dramatic improvements in throughput, yield, and efficiency*
and5_ For example, Hung et al.® developed a three-phase data-
science framework for semiconductor assembly that uses
LASSO and stepwise regression to select critical process
parameters and then apply multiple ML models (neural
networks, support vector regression, and gradient boosting)
to predict the extent of die delamination (a leading cause of
chip failure) from pre-bonding sensor data. Their empirical
study on actual fab data showed that this framework provides
“effective delamination prediction” and supports rapid
troubleshooting (thus shortening cycle times and improving
yield). In a related defect-detection application, Shen and
Lee” use deep learning to improve wafer bin map recognition
(WBMR) in assembly. They embed a convolutional network
(Inception CNN) in a defect classification pipeline that
includes autoencoder—based data augmentation and region
classification, enabling the system to distinguish systematic
defect patterns (for example, tool or recipe issues) from
random noise. By adjusting the anchors with a revised
Jaccard index and retraining on augmented samples, the
WBMR accuracy was significantly improved, demonstrating
how ML can automate pattern recognition in packaging
inspection and thereby speed up quality-control decisions.
Similarly, Wang and Chiu® tackle wire-bonding quality by
predicting the “shear force” (bond adhesion) before bonding
takes place. They automatically extract six features from
probe-mark images and use PCA-transformed features in a
random-forest classifier; this model identifies bad chips with
97.92% accuracy before bonding. By catching low-shear-
force die in advance, their approach avoids unnecessary
bonding steps, saving processing time and cost and hence
improving overall packaging throughput. These examples
illustrate how ML-based vision and classification systems
can make detection faster and more accurate than traditional
manual or rule-based inspection.

Beyond defect inspection, ML also enables predictive
maintenance and process optimization to speed decisions. For
instance, Pradeep et al.® apply ML to equipment and wafer-
processor sensor data to predict impending wafer or tool
failures; their models (including random forests, SVMs, and
gradient boosts) achieve high accuracy (>93% for wafer-
failure prediction). By forecasting failures, the system
recommends maintenance before breakdowns, thereby
reducing unplanned downtime and boosting equipment
utilization (in one study wafer fab tools ran only ~44% of the
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time before PdM). In effect, the data-driven model reduces
equipment failure by enabling predictive maintenance and
increases productivity. A broader survey by Chen et al.
confirms that ML models are being deployed in advanced
process control (APC), virtual metrology, and in-line quality
control to accelerate feedback and improve yield, noting that
ML-driven automation is rapidly gaining popularity and
advancing at a swift pace in semiconductor manufacturing.
Likewise, Yu et al.® demonstrate that integrating cross-fab
data with cloud-based ML tools can drastically shorten new-
product introduction (NPI) cycle time: by automating yield
management and test-time analysis, ML analytics helped
expedite yield learning, cut test time, and enhance quality for
a safe product launch. In their study of lead-frame assembly,
higher throughput was achieved by using ML-guided
statistical yield tools on hard/soft bin data and first-fail test
parameters, which expedited vyield learning, test time
reduction (TTR) and quality enhancement during production
ramp-up. These findings indicate that ML-driven “decision-
support” at the system level fusing sensor, test, and yield data
can compress analysis time and provide real-time
recommendations for process adjustments.

Across these application domains from predictive
maintenance and scheduling to defect detection and yield
management, researchers report that ML methods
consistently enable faster, more accurate decisions. For
example, Cao et al.'! presents a real-time surface-defect
detector for chip packages using a YOLOv7 deep network
enhanced with attention modules; compared to a baseline
network, their ML model runs ~21.6% faster (and with far
fewer parameters) while improving detection accuracy by
1.39% on a custom packaging-defect dataset. This sort of
speed-up is representative: ML systems eliminate
cumbersome hand-tuned feature extraction, automatically
optimize across many variables, and operate continuously, so
that decisions (for example, flagging a fault or triggering a
maintenance alert) happen nearly instantaneously once
sufficient data are collected. In each case above, the use of
supervised or deep learning on historical assembly data has
translated to dramatic gains. The surveyed literature
emphasizes that ML-driven models and analytics provide
real-time monitoring, predictive maintenance, and adaptive
control that minimize downtime and waste while optimizing
output. In summary, studies from the past five years show that
embedding ML into semiconductor assembly whether in
backend packaging lines or test and NPI flows can slash
decision latency and error rates. By converting streaming fab
data into automated predictions and prescriptions, ML
empowers shop-floor operators and engineers to act more
quickly and confidently, accelerating semiconductor
assembly decision cycles and improving product yield and
quality.

3.0 METHODOLOGY

This paper implements a Generative Al-based system that
automates statistical insight extraction to address manual
analysis limitations in large-scale manufacturing. The system
supports natural language queries for performing exploratory
analysis, anomaly detection, and experiment design without
coding. This section outlines the system architecture, and its
core modules (Auto-EDA, Auto-AD, and Data Insights)
designed to accelerate decision-making in semiconductor
assembly.

3.1 System Overall Architecture

INPUT DATA

FRONT-END BACK-END

Fig. 3. Architecture of the Al-Assisted Insight Generation System. The
architecture illustrates the interaction between the user interface, web server,
agent classifier, modular agent pipelines, and the underlying database.

Fig. 3 illustrates the overall system architecture of the
proposed Al-assisted insight generation framework. The
process begins with user interaction via a web browser, where
structured data files (such as CSV or Excel) and a natural
language prompt are submitted. These inputs are transmitted
to a web server, which functions as the central controller. A
Prompt-to-Agent Router within the server interprets the
prompt to determine the user’s intent and dispatches the
request to the appropriate agent pipeline. For instance, a
query such as, “Perform data analysis using the attached
dataset and provide an insight,” would trigger both the Auto-
EDA and Data Insights agents.

Table 1. Description of Processing Agents

Agent name | Purpose / Task

Auto-EDA Performs automated exploratory data
analysis, including summary statistics,
visualizations, and data profiling.

Auto-AD Detects anomalies or outliers in the dataset

using statistical or machine learning-based
methods.

Generates contextual insights or natural
language summaries from the data, based
on the user’s prompt.

Data Insights

As shown in Table 1, available agents include Auto-EDA,
Auto-AD, and a general-purpose Data Insights agent. Each
agent executes its specific task and may interact with a
backend database that stores knowledge logs, memory, or
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previously generated insights. The results are then returned to
the front-end for user interpretation. This modular
architecture is extensible, allowing new agents to be
integrated with minimal modification to the routing logic.
Detailed descriptions of each processing pipeline are
provided in the following sections.

3.2 Data Insights Agent Pipeline

Data Insights Processing ———

p - rompt Engineering
Pipeline Tomplats

1. Standardized table formatting

2. Data visualization using Plotly

3. Aggregate data (if asked)

4. Add graph elements

5. Format response (HTML)
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preprocessing Al Model
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UNIT

Dataset
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File Transfer Protocol
(FTP) Server

User Prompt Payload
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This modular architecture supports scalable, low-effort
insight generation from raw manufacturing data, enabling
domain experts and non-experts alike to engage with

analytical outputs without requiring programming.

3.3 Automated Exploratory Data Analysis Agent Pipeline
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Fig. 4. System Architecture of the Data Insights Processing Pipeline. The
architecture illustrates the end-to-end workflow for generating insights from
structured tabular data using a GenAl model.

As illustrated in Fig. 4, users submit two types of input: a
structured dataset (in CSV or Excel format) and a natural
language prompt. The dataset is uploaded and staged via a
File Transfer Protocol (FTP) server, while the user prompt is
directly passed to the system. These components are
combined into a unified API payload for further processing.

Subsequently, the Processing Unit begins with a data
preprocessing module that performs tasks such as schema
validation, data type checking, formatting standardization,
and data cleaning. A prompt engineering template then
guides the construction of the final prompt issued to the
GenAl model. The template includes directives for
standardized table formatting, data visualization using Plotly,
optional data aggregation, adding graph elements (such as
legends, axes, and axis labels) and HTML response
formatting.

Finally, the GenAl model receives the processed input and
generates an HTML-formatted response. This response is
forwarded to an Output Handler Server, which acts as a
temporary storage and transfer layer. The output is then
parsed by an HTML parser and rendered in the user interface,
allowing users to view interactive visualizations and textual
summaries.

Fig. 5. System Architecture of the Auto Exploratory Data Analysis Pipeline.
The architecture illustrates the end-to-end workflow for generating
automated Exploratory Data Analysis from structured tabular data while
utilizing large language model for generating insights.

As illustrated in Fig. 5, the Auto Exploratory Data Analysis
(Auto EDA) module follows a structural framework like the
data insight pipeline, consisting of four main sections: User
Input, Processing Unit, Generated Response, and Output. The
distinction lies in the Processing Unit, which is composed of
four key components.

First, Statistical Analysis computes essential statistical
measures such as mean, median, standard deviation, and
skewness. It also analyzes the distributions of Key Process
Output Variables (KPOVs) and Key Process Input Variables
(KPIVs), enabling detection of data patterns and emerging
trends.

Second, Data Visualization provides insightful graphical
representations through histograms, box plots, scatter plots,
time series plots, and heatmaps. These visual tools help
illustrate data distributions and offer statistical summaries to
enhance interpretation. Third, Process Monitoring focuses on
evaluating critical manufacturing characteristics. This
component assesses process capability and stability over
time, aiding in performance tracking and continuous
improvement.

Finally, Performance Metrics further evaluate the same
manufacturing indicators such as AVT, Ni-Thickness, and
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Flatness to quantify overall performance, ensuring reliable
benchmarking and supporting long-term optimization efforts.

3.4 Automated Anomaly Detection Agent Pipeline
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Fig. 6. System Architecture of the Auto Anomaly Detection Pipeline. The
architecture illustrates the end-to-end workflow for generating automated
Anomaly Detection from structured tabular data while utilizing large
language model for generating insights.

Like the Data Insight and Auto EDA modules, the Auto
Anomaly Detection (Auto AD) system follows the same
pipeline structure comprising User Input, Processing Unit,
Generated Response, and Output as shown in Fig. 6. The
primary distinction lies in the Processing Unit, which is
tailored to support two key components: Anomaly Detection
and Causal Inference. The Anomaly Detection component
identifies data points that deviate significantly from expected
patterns, capturing rare events, data inconsistencies, or
hidden trends. To support interpretability, visualizations such
as histograms are used to display the distribution of anomaly
scores, highlighting outliers and skewness in the data. Box
plots are employed to illustrate the range, median, and
variability of anomaly scores, distinguishing between normal
(0) and anomalous (1) instances. The Causal Inference
component aims to determine which features have a genuine
causal influence on the occurrence of anomalies, as opposed
to mere correlation. This facilitates a deeper understanding of
the root causes of anomalous behavior. Visual aids include a
Feature Importance Chart generated using an isolation forest
model, which ranks numerical features by their impact on
anomaly detection. Additionally, a Top 5 Features vs. Index
Plot visualizes how the most influential numerical features
vary across data records, aiding in the identification of
specific anomaly-driving points. For categorical variables,
the top five influential features are selected based on
statistical association tests such as Theil’s U, providing
insights into which categories are most strongly linked to
anomalous events.

4.0 RESULTS AND DISCUSSION

This section presents the business impact of the proposed
system, highlighting efficiency gains achieved through
deployment. It also discusses test case results demonstrating
the performance of each core agent, including Data Insights,
Auto-EDA, and Auto-AD. For testing and public
dissemination, a publicly available dataset from Kaggle®
related to the semiconductor industry was used to
demonstrate the system’s capabilities.

4.1 Business Impact and Efficiency Gains

The deployment of the GenAl-powered Data Insights system
resulted in substantial operational benefits within the WDC
analytics environment. One of the most notable
improvements was the significant reduction in manual effort
required for routine data analysis tasks, including insights
generation, anomaly detection, and visualization preparation.

In line with recent findings by Uhunoma'®, which
demonstrated that GenAl could reduce work turnaround time
by up to 80%, the implemented system achieved comparable
efficiency gains. Specifically, time spent on insight
generation was reduced compared to the baseline manual
workflow, which previously involved labor-intensive
scripting, spreadsheet-based processing, and iterative
reporting cycles. These efficiency improvements stem from
the automation of repetitive tasks and the elimination of
manual scripting, data formatting, and revalidation steps that
were traditionally required.

Beyond time savings, the system also contributed to
improved decision latency, enabling faster detection of
anomalies and more timely corrective actions. This
enhancement directly supports engineering responsiveness to
quality excursions and process drifts, thereby strengthening
yield protection.

The adoption of a natural language interface represents a
critical step in the ongoing democratization of data analytics,
accelerating the transition from manual, expert-driven tasks
to accessible, Al-assisted processes. With this capability,
non-technical users (including production supervisors and
quality engineers) can interact with structured data without
requiring programming or statistical expertise. This has led to
enhanced cross-functional collaboration and broader data
utilization in day-to-day operational decision-making.

Finally, by deploying the system within a private and secure
infrastructure, all internal manufacturing data remained
confined within organizational boundaries, addressing
concerns regarding data confidentiality and regulatory
compliance. This secure deployment approach ensures the
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solution’s suitability for continuous use in high-sensitivity
domains such as product engineering, reliability monitoring,
and process control.

4.2 Data Insights Test Cases Result

The Data Insights Agent was utilized to assess whether wafer
processed through Etching equipment demonstrated
statistically higher defect rates compared to those processed
via Lithography or Deposition. The agent responded by
generating comparative visualizations, including a violin plot
and a box plot, representing the distribution of defect counts
across these process stages.

©

identified the optimal resources for your request. Below, you'll find the selected agents and tools along with their current stat

Data Insight Agent

Fig. 7. Defect Count Distribution by Process Stage. This violin plot
visualizes the spread and frequency of defects across process stages, with
Etching showing the widest distribution and highest concentration of defects.

The visual evidence in Fig. 7 confirms that wafers subjected
to the Etching stage exhibited both a wider spread and a
higher concentration of defects compared to those processed
in Lithography or Deposition. The agent’s descriptive
summary highlighted these differences, citing both the
median and variability of defect counts.

These findings validate the agent’s utility in surfacing
actionable insights through natural language interaction,
enabling faster diagnostic assessments without manual
scripting or statistical programming. The full visual outputs,
including the box plot and descriptive statistics by stage, are
provided in Appendix A for reference.

4.3 Exploratory Data Analysis Test Cases Result

Using the same wafer dataset provided to the Data Insight
Agent, the data was subsequently passed to the EDA Agent
for further exploration and insight generation. The agent

responded with a comprehensive analysis of the wafer data,
ranging from a general overview to detailed interactive
visualizations.

The scatter plot presents individual data points as blue dots,
each representing a combination of defect count and its
corresponding temperature. A red line overlays the plot to
indicate a linear regression fit, providing a straight-line
approximation of the trend in the data. The associated R2
value of 0.070 suggests a very weak linear correlation
between defect count and temperature_C. Additionally, a
blue dashed line represents a quadratic (second-order
polynomial) fit, which also yields an R2 value of 0.070. This
indicates that even a more flexible curved model does not
capture a strong relationship between the two variables.
Overall, the low R2 values from both fits imply that there is
no significant trend or correlation between defect count and
temperature in this dataset.

®

I've identified the optimal resources for your request. Below, you'l find the selected agents and tools along with their current
status.

Auto EDA

# Table of Contents

Fig. 8. Table of contents generated by the Auto EDA agent, covering an
overview of the dataset up to interactive visualizations such as box plots and
scatter plots, where users can select the x- and y-axes of the graphs.

Scatter Plot

This section allows you to create a scatter plot by selecting two numerical columns and an optional hue variable (categorical). This
visualization is useful for exploring relationships and trends between variables, with the added benefit of differentiating points based on

a category.
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Fig. 9. Interactive scatter plot generated by the EDA agent. In this example,
defect_count and temperature_C were selected to examine their correlation.
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4.4 Automated Anomaly Detection Test Cases Result

Using the same wafer dataset previously provided to the Data
Insight Agent and EDA Agent, the data was then passed to
the Auto AD Agent for anomaly detection. The agent
responded with two main sections: Anomaly Detection and
Causal Inference, both of which focus on identifying
anomalies within the data.

The bar chart in Fig. 10. concludes that among the categories,
Etching shows the highest contribution, accounting for nearly
50% of the total anomalies detected. This suggests that the
etching process is a significant source of irregularities within
the dataset. Deposition and Implantation follow, contributing
approximately 19% and 16% respectively. Lithography
accounts for about 13%, while Etch (a possibly mislabeled or
redundant category) contributes the least at around 3%. These
insights highlight which stages of the process may require
closer monitoring or process optimization to reduce the
occurrence of defects.

‘Contribution to Anomalies by process_stage

50 Category Value
M Ething
M Deposition
M Impiantation
M Lithography
Eich

Percentage (%)

0

Etching Deposition Implantation Lithography Etch

Category Value

Fig. 10. Bar chart showing the contribution of each process_stage to
anomalies, generated by the Auto AD agent.

5.0 CONCLUSION

This paper introduced a GenAl-based Data Insights system to
streamline data analysis and decision-making in
semiconductor assembly operations in WDC. By combining
natural language interfaces with automated modules for Data
Insight, Auto-EDA and Auto-AD agents, the system
significantly reduced manual workload and enhanced insight
accessibility across technical and non-technical users.

The implementation achieved a reduction of approximately
80% in manual analysis time, while ensuring secure, internal
handling of sensitive manufacturing data. These results
demonstrate the feasibility and effectiveness of deploying

domain-specific GenAl solutions in high-volume, data-
intensive industrial environments.

6.0 RECOMMENDATIONS

To extend the impact of the proposed system, several
enhancements are recommended. First, integrating the
platform with real-time data sources such as manufacturing
execution systems or loT-based sensors would enable
continuous monitoring and immediate anomaly detection.
Second, fine-tuning the underlying GenAl model using
domain-specific data can improve contextual accuracy and
the relevance of generated insights. Incorporating a user
feedback mechanism is also advised to support iterative
prompt optimization and continuous system learning.
Additionally, enhancing the visualization layer to support
interactive features, such as drill-downs and cross-variable
comparisons, would provide users with deeper analytical
capability. Finally, implementing access control and data
governance policies will ensure secure and role-based access
to both raw data and generated reports, thereby maintaining
compliance with internal security standards.

7.0 ACKNOWLEDGMENT

The authors would like to express their sincere gratitude to
the Operations Analytics Excellence department for their full
support and guidance throughout the development of this
project. Furthermore, appreciation is also extended to the
Information Technology team for providing the necessary
platforms and technologies that enabled the successful
implementation of the system.

8.0 REFERENCES

1. P. Vejjanugraha et al., “An Automated Data Analytics and
Overall Equipment Effectiveness Visualization Technique for
Assembly Line on Continuous Manufacturing System using

Power BI,” in 2022 7th International Conference on
Business and Industrial Research (ICBIR), Bangkok,
Thailand, 2022, pp. 562-567, doi:

10.1109/ICBIR54589.2022.9786497.

2. D.Noskievi¢ova, T. Smajdorova and E. Tyleckova, “Statistical
Process Control in Big Data Environment,” in 2020 21th
International Carpathian Control Conference (ICCC),
High  Tatras, Slovakia, 2020, pp. 1-6, doi:
10.1109/ICCC49264.2020.9257251.

3. L. M. Choong and W. Kuang, “Advanced Data Analytics and
Supervised Machine Learning in Optics Engineering
Analysis,” in 2021 International Conference on Computer
& Information Sciences (ICCOINS), Kuching, Malaysia,



34t" ASEMEP National Technical Symposium

10.

11.

12.

13.

2021, pp. 157-159, doi:
10.1109/ICCOINS49721.2021.9497207.

Y.-L. Chen et al., “Exploring Machine Learning for
Semiconductor Process Optimization: A Systematic Review,”
in IEEE Transactions on Artificial Intelligence, pp. 1-21,
2024, doi: 10.1109/tai.2024.3429479.

S.-Y. Hung, C.-Y. Lee, and Y.-L. Lin, “Data science for
delamination prognosis and online batch learning in
semiconductor assembly process,” in IEEE Transactions on
Components Packaging and Manufacturing Technology,
vol. 10, no. 2, 2019, pp. 314-324, doi:
10.1109/tcpmt.2019.2956485.

S.-Y. Hung, C.-Y. Lee, and Y.-L. Lin, “Data science for
delamination prognosis and online batch learning in
semiconductor assembly process,” in IEEE Transactions on
Components Packaging and Manufacturing Technology,
vol. 10, no. 2, 2019, pp. 314-324, doi:
10.1109/tcpmt.2019.2956485.

P.-C. Shen and C.-Y. Lee, “Wafer Bin Map recognition with
Autoencoder-Based data augmentation in semiconductor
assembly process,” in IEEE Transactions on Semiconductor
Manufacturing, vol. 35, no. 2, 2022, pp. 198-209, doi:
10.1109/tsm.2022.3146266.

C.-S. Wang and J.-E. Chiu, “Shear force classification before
wire bonding based on probe mark 2-D images using machine
learning methods,” in IEEE Transactions on Semiconductor
Manufacturing, vol. 35, no. 2, 2022, pp. 210-219, doi:
10.1109/tsm.2022.3162401.

D. Pradeep, B. V. Vardhan, S. Raiak, I. Muniraj, K. Elumalai,
and S. Chinnadurai, “Optimal Predictive Maintenance
Technique for Manufacturing Semiconductors using Machine
Learning,” in 2023 3rd International Conference on
Intelligent Communication and Computational Techniques
(ICCT), 2023, pp. 1-5, doi:
10.1109/icct56969.2023.10075658.

H. Yu et al, “Expediting manufacturing launch using
integrated data with AI/ML analytic solutions,” in IEEE
Journal of the Electron Devices Society, 2024, p. 1, doi:
10.1109/jeds.2024.3522126.

Y. Cao, Y. Ni, Y. Zhou, H. Li, Z. Huang, and E. Yao, “An auto
chip package surface defect detection based on deep learning,”
in IEEE Transactions on Instrumentation and
Measurement, vol. 73, 2023, pp. 1-15, doi:
10.1109/tim.2023.3347799.

A. Pyne, “Wafer Dataset,” Kaggle, [Online]. Available:
https://www.kaggle.com/datasets/avijitl5/wafer-dataset.
[Accessed: June 13, 2025].

E. Uhunoma, “From hours to minutes: The impact of
generative Al on work turnaround time and productivity,”
United Int. J. Res. Technol., vol. 6, 2025, pp. 98-108.

9.0 ABOUT THE AUTHORS

Alberto Zaldivar is a Technology Lead at Western Digital,
with a total of 20 years of experience. He holds a Bachelor of
Science in Computer Engineering from Adamson University.

Jerald Constantino is an Associate Data Scientist at Western
Digital Corporation Philippines, specializing in machine
vision, machine learning, and generative Al projects. He
holds a Bachelor of Science in Computer Engineering from
Batangas State University - TNEU and is currently studying
for a Master of Science in Computer Engineering at MapUa
University.

Jhon Vincent Gupo is an Associate Data Scientist at
Western Digital Storage Technologies for Operation
Excellence. He is also a recognized Digital Twin Champion.
He holds a bachelor’s degree in computer science at Laguna
State Polytechnic University — Los Bafos.

10.0 APPENDIX

Appendix A — Expanded Visualizations for Defect Count
Analysis using Data Insights Agent

Defect Count Distribution (Violin Plot) by Process Stage

Process Stages
10 [l Lithography

oEE

Deposition
Implantation
8 Etch

Defect Count

Lithagraphy Etching Deposition Implantation Etch

Process Stage

Defect Distribution Density Analysis

Key Observations
The violin plot shows the complete distribution shape of defect counts, revealing asymmetric
patterns

Distribution Characteristics
Each process stage shows distinct defect count distributions with varying spread and central
tendencies

Recommendations
1. Focus quality control efforts on processes with higher defect density
2. Standardize processes to reduce variability in defect counts
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efect Count Distrbution by Process Stage Appendix C — Expanded Visualizations of the result provided
by Auto AD Agent showcasing Anomaly Detection and
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Lithography Etching Deposition Implantation Etch

Process Stage

Defect Distribution Analysis

Key Observations
The box plot reveals varying defect distributions across process stages. Etching shows a
median defect count of 1.94

Frequency

Statistical Significance

ANOVA test results: F-statistic = 271.29, p-value = 0.0000. This indicates statistically
significant differences between process stages

Recommendations

1. Investigate Etching process parameters for optimization

2. Implement regular monitoring of defect rates across all stages

Caveats: Analysis assumes nermal distribution and independent samples

Appendix B — Expanded Visualizations of Scatter Plot and
Correlation Heatmap which is a result of Auto EDA Agent

-0.05 0 X 01
Anomaly Score Range
Scatter Plot

This section allows you ta create & scatter plot by selecting twa numerical columns. and an optional hue variable (categorical) This

visualization is useful for exploring relalianships and rends belween variables wilh the acded benefil of diférentiating points based en Feature Importance for Anomaly Detection
a category.
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Correlation Heatmap

The camelation heatmap visually represents the correlation coeficients betwaen numerical variables in your dataset. The color
gradient indicates the sirength and direction of these correlations, making it sasier lo identiy strong relationships between features.
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