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ABSTRACT

Many legacy industrial machines remain isolated from digital
monitoring systems due to the high cost, complexity, or
impracticality of retrofitting them with modern sensors or [oT
devices. This creates a critical barrier for manufacturers
aiming to adopt Industry 4.0 practices, where real-time data
and process visibility are essential. To address this challenge,
this study proposes a computer vision-based video analytics
system that functions as a virtual sensor to automate the
measurement of Key Process Input Variables (KPIVs) from
legacy equipment. The system utilizes real-time video feeds
captured by strategically positioned cameras and applies deep
learning models for object detection, optical character
recognition (OCR), and visual state recognition to extract
meaningful process parameters from analog interfaces, such
as dial gauges, indicator lights, and display panels. These
parameters are digitized and streamed to a centralized
dashboard for real-time monitoring, historical logging, and
performance analytics. Deployment across multiple
industrial use cases demonstrated high accuracy,
responsiveness, and minimal integration overhead. The
results validate the system’s effectiveness in providing non-
invasive, scalable, and cost-efficient digital augmentation of
legacy machines. This approach offers a practical pathway to
enhance operational transparency, support predictive
maintenance, and accelerate digital transformation without
altering existing hardware infrastructure.

1.0 INTRODUCTION

In the age of smart manufacturing and Industry 4.0, the ability
to continuously monitor and analyze Key Process Input
Variables (KPIVs) is essential for maintaining optimal
production quality and operational efficiency. KPIVs—such
as temperature, pressure, cycle times, and component
status—offer valuable insights into machine health and
process consistency. However, many manufacturing lines
still operate using legacy machines that lack modern
connectivity and sensing capabilities. In our current
manufacturing process, KPIV data is typically manually
recorded once per shift by human operators. This method

introduces several critical challenges such as: It is time-
consuming and labor-intensive, reducing  operator
productivity. It is prone to human error, potentially
compromising the accuracy and consistency of the data. It
leads to limited data availability, with delayed and infrequent
updates that hinder real-time decision-making and
monitoring.

These limitations pose a significant barrier to achieving data-
driven manufacturing excellence, especially when upgrading
legacy systems with 10T hardware is costly or operationally
disruptive. To address this, the present work proposes a
computer vision-based system that uses deep learning and
video analytics to act as a virtual sensor for non-invasive
KPIV measurement. By leveraging existing camera
infrastructure or deploying low-cost industrial cameras, this
approach digitizes visual cues from machine panels, gauges,
and indicators—enabling scalable data collection without
retrofitting or altering legacy hardware.

1.1 Video Analytics

Video analytics involves analyzing live or recorded video
streams to extract meaningful information. In industrial
settings, strategically placed cameras can continuously
observe control panels, analog displays, and visual signals.
These visual data streams are processed to monitor machine
states, detect anomalies, or track process changes. Unlike
conventional sensors, video analytics is non-intrusive and
adaptable, providing a versatile tool for bridging the digital
divide in legacy environments.

1.1.1 Deep Learning

Deep learning, particularly through Convolutional Neural
Networks (CNNs), enhances video analytics by enabling
automated object detection, optical character recognition
(OCR), and state classification. These techniques allow the
system to recognize dial positions, read numeric displays, and
classify indicator light statuses. Trained on representative
industrial datasets, these models ensure reliable performance
across diverse equipment types, lighting conditions, and
viewing angles.
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1.1.2 Computer Vision as A Sensor

By interpreting visual data with deep learning, computer
vision can function as a virtual sensor—digitizing KPIVs
from legacy machinery without any physical intervention.
This enables real-time monitoring of operational parameters
such as counts, durations, and visual status indicators. The
extracted data is then streamed to a centralized dashboard for
visualization,  alerting, and  analytics—empowering
manufacturers to make informed decisions, optimize
maintenance schedules, and improve process transparency.
Although computer vision has been widely applied in defect
detection, robotic automation, and quality control, its
application as a sensing mechanism for KPIV acquisition in
legacy environments is still emerging. This study contributes
to this area by presenting a deployable and cost-effective
solution that digitizes manual processes, increases data
granularity, and drives smarter manufacturing with minimal
infrastructure changes.

2.0 REVIEW OF RELATED WORK

In recent years, the convergence of computer vision and
industrial automation has sparked interest in non-contact
sensing techniques for legacy manufacturing systems.
Traditional data acquisition in such environments typically
relies on Supervisory Control and Data Acquisition
(SCADA) systems and physical sensors. However, these
solutions often require significant retrofitting, wiring, and
integration costs, making them unsuitable for aging
equipment with limited digital interfaces [1].

Previous works have demonstrated the efficacy of computer
vision for specific industrial tasks. For example, defect
detection and visual inspection using convolutional neural
networks (CNNs) have been widely explored to improve
quality control in production lines [2]. Robotic vision systems
for automated pick-and-place operations have also been
implemented using deep learning models such as YOLO and
SSD for real-time object localization [3]. However, most of
these applications focus on automation tasks involving
discrete events or quality checks, rather than continuous
process monitoring.

Optical Character Recognition (OCR) has been applied to
digitalize analog meters and handwritten records in industrial
settings. In [4], a deep learning-based OCR system was used
to read analog gauge readings from pressure and temperature
meters, demonstrating the potential to digitize visual KPIVs.
Similarly, [5] introduced a method using computer vision to
recognize dial pointer positions in industrial instruments by
combining segmentation and geometric analysis, achieving
promising results in controlled environments.

Despite these advancements, the use of computer vision
specifically as a virtual sensor to replace manual logging of

Key Process Input Variables (KPIVS) remains an
underexplored domain. The application of integrated object
detection, OCR, and state classification for comprehensive
KPIV monitoring from legacy machine interfaces has not
been widely studied in the literature. Most existing systems
lack generalization across varying equipment types and
lighting conditions, which limits their scalability.

This paper builds upon these foundational studies by
presenting a unified, real-time video analytics system capable
of extracting and streaming KPIV data from analog control
panels using deep learning. Unlike prior work that targets
narrow applications or controlled environments, our
approach focuses on deploy ability in diverse, real-world
manufacturing  scenarios  with  minimal  hardware
modification.

3.0 METHODOLOGY

This study employs an applied experimental approach to
develop and evaluate a computer vision-based system for
automated Key Process Input Variable (KPIV) measurement
in legacy industrial machines. The methodology includes the
design, development, and deployment of a video analytics
system integrated with deep learning models. The project
follows a structured implementation cycle to ensure accuracy,
robustness, and applicability in real-world factory settings.

3.1 Materials

The following materials and tools were used in the system:

e Industrial Cameras: Low-cost IP cameras with 1080p
resolution, selected for affordability and flexibility in
deployment.

e Processing Hardware: Server running with CPU only

e Software Frameworks:

Python (OpenCV, TensorFlow, PyTorch)

o PaddleOCR for optical character recognition

o YOLOVvS for object detection

o Custom CNN models for
classification

e Dashboard Interface: Using the TIBCO Spotfire
dashboard for real-time visualization and monitoring

o

indicator state

3.2 Equipment and Camera Placement

The computer vision system was deployed on 122 legacy
machines with analog gauges, indicator lights, and 7-segment
digital displays. Cameras were strategically mounted at fixed
positions to ensure unobstructed views of the target KPIV
indicators. Focus and exposure settings were manually tuned
to ensure clarity under varying lighting conditions.

3.3 Design of Experiment
The study was conducted in three phases: model training,
field deployment, and system validation. Table 1 outlines the
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different test combinations of machine types and their
corresponding setup.

Table 1. Summary of Experimental Combinations

‘ No Machine type Setup Used
YOLOv8 model ROIs
1 .
detection
YOLOv8 model ROls
2 .
detection
YOLOv8 model ROls
3 .
detection
YOLOv8 model ROls
4 .
detection

1 Machine type has 5 region of interest for KPIV parameter.
2Machine type has 4 region of interest for KPIV parameter.
3 Machine type has 5 region of interest for KPIV parameter.

4Machine type has 5 region of interest for KPIV parameter.

3.4 Dataset Preparation Using CVAT

To build a robust object detection model, video frames from
CCTV cameras were extracted and annotated using CVAT
(Computer Vision Annotation Tool). Annotators labeled the
Regions of Interest (ROIs) such as digital displays, indicators,
and status lights on various machines. These annotations
were exported in YOLO format, which includes bounding
boxes and class labels.

3.5 Live Video Feed Acquisition

CCTV cameras installed in the cleanroom provide live video
feeds using the Real-Time Streaming Protocol (RTSP). The
video stream may be encoded in either H.264 or H.265
formats. H.264 offers compatibility with lower memory
usage, while H.265 provides higher compression efficiency,
crucial for bandwidth management in continuous monitoring.

3.6 Model Training Using YOLOvV8

The annotated dataset was used to train a YOLOv8 object
detection model. This model is designed to detect and classify
the ROIs on the machine interface panel with high accuracy.
Training was performed on a workstation with only CPU.

Performance metrics such as precision, recall, and mAP
(mean Average Precision) were monitored to evaluate model
effectiveness.

3.7 Real-Time ROI Detection and OCR Inference

Once deployed, the trained YOLOV8 model processes live
video frames captured every 10 seconds. Detected ROls are
cropped using OpenCV and then passed to PaddleOCR,
which extracts the textual or numeric data from each region.
This is particularly useful for capturing changing machine
readings like pressure, temperature, or operational codes.

3.8 Data Logging to SQL Database

Extracted OCR values, along with their timestamps and
machine IDs, are automatically logged into a structured SQL
database. This process ensures traceability and enables
historical data analysis for maintenance and operational
optimization.
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Figure 1. The proposed video analytics pipeline

4.0 RESULTS AND DISCUSSION

This section presents the performance results and analysis of
the machine status recognition system, particularly focusing
on the comparative evaluation between conventional OCR
methods and PaddleOCR. The system captures live machine
interface data through RTSP streams, applies YOLOv8 for
screen ROl detection, and uses OCR to extract digital
readings, which are subsequently logged to a structured SQL
database every 10 seconds.

Object Detection Performance

YOLOV8 successfully localized the target display areas
across various machine types (5 machine types), achieving a
consistent detection accuracy above 95% mAP@0.5. The
ROI bounding boxes were crucial to isolate specific digit
zones before applying OCR, which greatly improved the



34t" ASEMEP National Technical Symposium

downstream text extraction accuracy compared to full-frame
OCR attempts.

OCR vs. PaddleOCR Performance

To evaluate text recognition performance, we benchmarked
PaddleOCR against traditional OCR engines such as
Tesseract and EasyOCR. Metrics include character accuracy,
word accuracy, and average recognition time.

Table 1. OCR Accuracy Comparison

OCR Character | Word Avg.

Engine Accuracy Accuracy Inference
(%) (%) Time

(ms/image)

Tesseract 91.2 86.5 52.4

EasyOCR 93.7 88.1 39.1

PaddleOCR | 98.0 95.0 317

As shown in Table 1, PaddleOCR outperformed both
Tesseract and EasyOCR in all aspects. Not only did it deliver
higher character and word recognition rates, but it also had
the shortest average inference time. This efficiency is
especially critical in the real-time 10-second monitoring
window of our system.

Quialitative Observations

PaddleOCR exhibited superior robustness in recognizing
digits under poor lighting, screen glare, and slight tilts —
conditions where traditional OCRs often failed or returned
partial text. This performance is attributed to PaddleOCR’s
use of a detection-recognition pipeline and its deep learning-
based language modeling component.

In contrast, Tesseract was sensitive to noisy backgrounds and
screen reflections, often misclassifying characters such as ‘8’
and ‘0’. EasyOCR performed better than Tesseract but still
lagged behind PaddleOCR in processing speed and accuracy,
particularly on complex machine screen layouts.

Real-Time System Reliability

The complete system, integrating YOLOvV8 and PaddleOCR,
maintained stable real-time processing within the required
10-second cycle. The RTSP camera streams (H265 and
H264) were decoded using OpenCV, with H265 streams
offering slightly better frame rates and reduced CPU load.
The final structured output was reliably logged into the
database, including Machine ID, Timestamp, and the
extracted values such as pressure, count, or status flags.
Figure 4 illustrates the system output captured during a test
session across multiple machines, with consistent detection
and recognition results.
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Comparison to Previous Works

Previous studies in industrial OCR have relied heavily on
rule-based OCR systems or preprocessed static images. These
approaches lack scalability and adaptability to real-world
environments. Our integration of YOLOvV8 with PaddleOCR
in a live RTSP-based setup represents a significant
improvement in both adaptability and performance. It aligns
with recent industry-focused research advocating for deep
learning-based OCR pipelines in production environments

[6].

Practical Implications

The superior performance of PaddleOCR makes it a reliable
solution for deployment in semiconductor cleanroom
environments, where accurate and fast machine status
recognition is essential. The system can be extended to
support predictive analytics by incorporating trend
monitoring or alarm conditions derived from the digit values.
Its plug-and-play nature also makes it suitable for integration
into MES platforms or edge-Al deployments in smart
factories.

5.0 CONCLUSION

This study demonstrated the feasibility and effectiveness of
using a computer vision-based system for automated KPIV
measurement in legacy industrial machines. By integrating
YOLOvV8 for object detection and PaddleOCR for optical
character recognition, the system reliably captured and
interpreted machine interface data in real time from live
RTSP video streams. The experimental results showed that
YOLOV8 consistently achieved high detection accuracy
across varied machine setups, while PaddleOCR
outperformed traditional OCR engines in both accuracy and
inference speed.

The system maintained real-time performance within a 10-
second processing window, successfully logging structured
machine data into an SQL database. Notably, PaddleOCR
exhibited robustness under challenging visual conditions,
such as glare and low contrast, which often hindered the
performance of conventional OCR tools. These findings
validate the potential of the proposed deep learning-powered
video analytics pipeline as a scalable and adaptable solution
for industrial monitoring applications.

Overall, this work contributes to the advancement of smart
manufacturing by enabling non-invasive, real-time status
recognition in environments where manual data collection or
retrofitting with digital sensors may be impractical. The
approach holds promise for broader deployment in cleanroom
and factory settings, especially when integrated with MES
platforms or predictive maintenance systems.
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6.0 RECOMMENDATIONS

In light of the findings and the successful deployment of the
computer vision-based KPIV monitoring system, it is
recommended that manufacturing facilities, particularly
those operating legacy machines, consider adopting deep
learning-powered video analytics to enhance their
operational visibility. The integration of YOLOv8 and
PaddleOCR has proven to be both effective and practical for
real-time data extraction and scaling this solution across more
production lines could significantly improve data-driven
decision-making and reduce manual monitoring burdens.
Stakeholders responsible for factory automation and digital
transformation should invest in building infrastructure that
supports edge Al deployments, such as providing sufficient
computational resources and stable RTSP camera networks.
This would ensure that systems like the one presented in this
study can operate reliably at scale.

For software developers and system integrators, it is
advisable to explore integration of the proposed monitoring
pipeline into existing Manufacturing Execution Systems
(MES) to enable seamless process monitoring and analytics.
The inclusion of alarm triggers or anomaly detection modules
could further enhance the utility of the system by supporting
predictive maintenance and early fault detection.

Future studies are encouraged to explore the application of
this system in more diverse environments, including outdoor
or high-vibration settings, to test its robustness and
generalizability. Additionally, expanding the OCR capability
to handle multilingual displays or handwritten inputs could
widen the applicability of this solution. Finally, long-term
performance evaluations under continuous factory operation
would provide further insights into system reliability and
maintenance requirements.
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