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ABSTRACT 

 

Many legacy industrial machines remain isolated from digital 

monitoring systems due to the high cost, complexity, or 

impracticality of retrofitting them with modern sensors or IoT 

devices. This creates a critical barrier for manufacturers 

aiming to adopt Industry 4.0 practices, where real-time data 

and process visibility are essential. To address this challenge, 

this study proposes a computer vision-based video analytics 

system that functions as a virtual sensor to automate the 

measurement of Key Process Input Variables (KPIVs) from 

legacy equipment. The system utilizes real-time video feeds 

captured by strategically positioned cameras and applies deep 

learning models for object detection, optical character 

recognition (OCR), and visual state recognition to extract 

meaningful process parameters from analog interfaces, such 

as dial gauges, indicator lights, and display panels. These 

parameters are digitized and streamed to a centralized 

dashboard for real-time monitoring, historical logging, and 

performance analytics. Deployment across multiple 

industrial use cases demonstrated high accuracy, 

responsiveness, and minimal integration overhead. The 

results validate the system’s effectiveness in providing non-

invasive, scalable, and cost-efficient digital augmentation of 

legacy machines. This approach offers a practical pathway to 

enhance operational transparency, support predictive 

maintenance, and accelerate digital transformation without 

altering existing hardware infrastructure. 

 

 

1. 0 INTRODUCTION 

 

In the age of smart manufacturing and Industry 4.0, the ability 

to continuously monitor and analyze Key Process Input 

Variables (KPIVs) is essential for maintaining optimal 

production quality and operational efficiency. KPIVs—such 

as temperature, pressure, cycle times, and component 

status—offer valuable insights into machine health and 

process consistency. However, many manufacturing lines 

still operate using legacy machines that lack modern 

connectivity and sensing capabilities. In our current 

manufacturing process, KPIV data is typically manually 

recorded once per shift by human operators. This method 

introduces several critical challenges such as: It is time-

consuming and labor-intensive, reducing operator 

productivity. It is prone to human error, potentially 

compromising the accuracy and consistency of the data. It 

leads to limited data availability, with delayed and infrequent 

updates that hinder real-time decision-making and 

monitoring.  

 

These limitations pose a significant barrier to achieving data-

driven manufacturing excellence, especially when upgrading 

legacy systems with IoT hardware is costly or operationally 

disruptive. To address this, the present work proposes a 

computer vision-based system that uses deep learning and 

video analytics to act as a virtual sensor for non-invasive 

KPIV measurement. By leveraging existing camera 

infrastructure or deploying low-cost industrial cameras, this 

approach digitizes visual cues from machine panels, gauges, 

and indicators—enabling scalable data collection without 

retrofitting or altering legacy hardware. 

 

1.1  Video Analytics 

 

Video analytics involves analyzing live or recorded video 

streams to extract meaningful information. In industrial 

settings, strategically placed cameras can continuously 

observe control panels, analog displays, and visual signals. 

These visual data streams are processed to monitor machine 

states, detect anomalies, or track process changes. Unlike 

conventional sensors, video analytics is non-intrusive and 

adaptable, providing a versatile tool for bridging the digital 

divide in legacy environments. 

 

1.1.1  Deep Learning 

 

Deep learning, particularly through Convolutional Neural 

Networks (CNNs), enhances video analytics by enabling 

automated object detection, optical character recognition 

(OCR), and state classification. These techniques allow the 

system to recognize dial positions, read numeric displays, and 

classify indicator light statuses. Trained on representative 

industrial datasets, these models ensure reliable performance 

across diverse equipment types, lighting conditions, and 

viewing angles. 
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1.1.2 Computer Vision as A Sensor 

 

By interpreting visual data with deep learning, computer 

vision can function as a virtual sensor—digitizing KPIVs 

from legacy machinery without any physical intervention. 

This enables real-time monitoring of operational parameters 

such as counts, durations, and visual status indicators. The 

extracted data is then streamed to a centralized dashboard for 

visualization, alerting, and analytics—empowering 

manufacturers to make informed decisions, optimize 

maintenance schedules, and improve process transparency. 

Although computer vision has been widely applied in defect 

detection, robotic automation, and quality control, its 

application as a sensing mechanism for KPIV acquisition in 

legacy environments is still emerging. This study contributes 

to this area by presenting a deployable and cost-effective 

solution that digitizes manual processes, increases data 

granularity, and drives smarter manufacturing with minimal 

infrastructure changes. 

 

 

2. 0 REVIEW OF RELATED WORK 

 

In recent years, the convergence of computer vision and 

industrial automation has sparked interest in non-contact 

sensing techniques for legacy manufacturing systems. 

Traditional data acquisition in such environments typically 

relies on Supervisory Control and Data Acquisition 

(SCADA) systems and physical sensors. However, these 

solutions often require significant retrofitting, wiring, and 

integration costs, making them unsuitable for aging 

equipment with limited digital interfaces [1]. 

Previous works have demonstrated the efficacy of computer 

vision for specific industrial tasks. For example, defect 

detection and visual inspection using convolutional neural 

networks (CNNs) have been widely explored to improve 

quality control in production lines [2]. Robotic vision systems 

for automated pick-and-place operations have also been 

implemented using deep learning models such as YOLO and 

SSD for real-time object localization [3]. However, most of 

these applications focus on automation tasks involving 

discrete events or quality checks, rather than continuous 

process monitoring. 

Optical Character Recognition (OCR) has been applied to 

digitalize analog meters and handwritten records in industrial 

settings. In [4], a deep learning-based OCR system was used 

to read analog gauge readings from pressure and temperature 

meters, demonstrating the potential to digitize visual KPIVs. 

Similarly, [5] introduced a method using computer vision to 

recognize dial pointer positions in industrial instruments by 

combining segmentation and geometric analysis, achieving 

promising results in controlled environments. 

Despite these advancements, the use of computer vision 

specifically as a virtual sensor to replace manual logging of 

Key Process Input Variables (KPIVs) remains an 

underexplored domain. The application of integrated object 

detection, OCR, and state classification for comprehensive 

KPIV monitoring from legacy machine interfaces has not 

been widely studied in the literature. Most existing systems 

lack generalization across varying equipment types and 

lighting conditions, which limits their scalability. 

This paper builds upon these foundational studies by 

presenting a unified, real-time video analytics system capable 

of extracting and streaming KPIV data from analog control 

panels using deep learning. Unlike prior work that targets 

narrow applications or controlled environments, our 

approach focuses on deploy ability in diverse, real-world 

manufacturing scenarios with minimal hardware 

modification. 

 

 

3.0 METHODOLOGY 

 

This study employs an applied experimental approach to 

develop and evaluate a computer vision-based system for 

automated Key Process Input Variable (KPIV) measurement 

in legacy industrial machines. The methodology includes the 

design, development, and deployment of a video analytics 

system integrated with deep learning models. The project 

follows a structured implementation cycle to ensure accuracy, 

robustness, and applicability in real-world factory settings. 

 

3.1 Materials 

The following materials and tools were used in the system: 

• Industrial Cameras: Low-cost IP cameras with 1080p 

resolution, selected for affordability and flexibility in 

deployment. 

• Processing Hardware: Server running with CPU only 

• Software Frameworks: 

o Python (OpenCV, TensorFlow, PyTorch) 

o PaddleOCR for optical character recognition 

o YOLOv8 for object detection 

o Custom CNN models for indicator state 

classification 

• Dashboard Interface: Using the TIBCO Spotfire 

dashboard for real-time visualization and monitoring 

 

3.2 Equipment and Camera Placement 

The computer vision system was deployed on 122 legacy 

machines with analog gauges, indicator lights, and 7-segment 

digital displays. Cameras were strategically mounted at fixed 

positions to ensure unobstructed views of the target KPIV 

indicators. Focus and exposure settings were manually tuned 

to ensure clarity under varying lighting conditions. 

 

3.3 Design of Experiment 

The study was conducted in three phases: model training, 

field deployment, and system validation. Table 1 outlines the 



34th ASEMEP National Technical Symposium 
 
 

 3 

different test combinations of machine types and their 

corresponding setup. 

  

Table 1. Summary of Experimental Combinations 

 

No  Machine type         Setup Used 

1 

 

YOLOv8 model ROIs 

detection 

2 

 

YOLOv8 model ROIs 

detection 

3 

 

YOLOv8 model ROIs 

detection 

4 

 

YOLOv8 model ROIs 

detection 

 

1 Machine type has 5 region of interest for KPIV parameter.    
2 Machine type has 4 region of interest for KPIV parameter. 

 3 Machine type has 5 region of interest for KPIV parameter. 

 4 Machine type has 5 region of interest for KPIV parameter. 

 

3.4 Dataset Preparation Using CVAT 

To build a robust object detection model, video frames from 

CCTV cameras were extracted and annotated using CVAT 

(Computer Vision Annotation Tool). Annotators labeled the 

Regions of Interest (ROIs) such as digital displays, indicators, 

and status lights on various machines. These annotations 

were exported in YOLO format, which includes bounding 

boxes and class labels. 

 

3.5 Live Video Feed Acquisition 

CCTV cameras installed in the cleanroom provide live video 

feeds using the Real-Time Streaming Protocol (RTSP). The 

video stream may be encoded in either H.264 or H.265 

formats. H.264 offers compatibility with lower memory 

usage, while H.265 provides higher compression efficiency, 

crucial for bandwidth management in continuous monitoring. 

 

3.6 Model Training Using YOLOv8 

The annotated dataset was used to train a YOLOv8 object 

detection model. This model is designed to detect and classify 

the ROIs on the machine interface panel with high accuracy. 

Training was performed on a workstation with only CPU. 

Performance metrics such as precision, recall, and mAP 

(mean Average Precision) were monitored to evaluate model 

effectiveness. 

 

3.7 Real-Time ROI Detection and OCR Inference 

Once deployed, the trained YOLOv8 model processes live 

video frames captured every 10 seconds. Detected ROIs are 

cropped using OpenCV and then passed to PaddleOCR, 

which extracts the textual or numeric data from each region. 

This is particularly useful for capturing changing machine 

readings like pressure, temperature, or operational codes. 

 

3.8 Data Logging to SQL Database 

Extracted OCR values, along with their timestamps and 

machine IDs, are automatically logged into a structured SQL 

database. This process ensures traceability and enables 

historical data analysis for maintenance and operational 

optimization. 

 

 
Figure 1. The proposed video analytics pipeline 

 

 

4.0 RESULTS AND DISCUSSION 

 

This section presents the performance results and analysis of 

the machine status recognition system, particularly focusing 

on the comparative evaluation between conventional OCR 

methods and PaddleOCR. The system captures live machine 

interface data through RTSP streams, applies YOLOv8 for 

screen ROI detection, and uses OCR to extract digital 

readings, which are subsequently logged to a structured SQL 

database every 10 seconds. 

 

Object Detection Performance 

YOLOv8 successfully localized the target display areas 

across various machine types (5 machine types), achieving a 

consistent detection accuracy above 95% mAP@0.5. The 

ROI bounding boxes were crucial to isolate specific digit 

zones before applying OCR, which greatly improved the 
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downstream text extraction accuracy compared to full-frame 

OCR attempts. 

 

OCR vs. PaddleOCR Performance 

To evaluate text recognition performance, we benchmarked 

PaddleOCR against traditional OCR engines such as 

Tesseract and EasyOCR. Metrics include character accuracy, 

word accuracy, and average recognition time. 

 

Table 1. OCR Accuracy Comparison 

OCR 

Engine 

Character 

Accuracy 

(%) 

Word 

Accuracy 

(%) 

Avg. 

Inference 

Time 

(ms/image) 

Tesseract 91.2 86.5 52.4 

EasyOCR 93.7 88.1 39.1 

PaddleOCR 98.0 95.0 31.7 

 

 

As shown in Table 1, PaddleOCR outperformed both 

Tesseract and EasyOCR in all aspects. Not only did it deliver 

higher character and word recognition rates, but it also had 

the shortest average inference time. This efficiency is 

especially critical in the real-time 10-second monitoring 

window of our system. 

 

Qualitative Observations 

PaddleOCR exhibited superior robustness in recognizing 

digits under poor lighting, screen glare, and slight tilts — 

conditions where traditional OCRs often failed or returned 

partial text. This performance is attributed to PaddleOCR’s 

use of a detection-recognition pipeline and its deep learning-

based language modeling component. 

In contrast, Tesseract was sensitive to noisy backgrounds and 

screen reflections, often misclassifying characters such as ‘8’ 

and ‘0’. EasyOCR performed better than Tesseract but still 

lagged behind PaddleOCR in processing speed and accuracy, 

particularly on complex machine screen layouts. 

 

Real-Time System Reliability 

The complete system, integrating YOLOv8 and PaddleOCR, 

maintained stable real-time processing within the required 

10-second cycle. The RTSP camera streams (H265 and 

H264) were decoded using OpenCV, with H265 streams 

offering slightly better frame rates and reduced CPU load. 

The final structured output was reliably logged into the 

database, including Machine ID, Timestamp, and the 

extracted values such as pressure, count, or status flags. 

Figure 4 illustrates the system output captured during a test 

session across multiple machines, with consistent detection 

and recognition results. 

 

 
Figure 4. The output captured 

 

Comparison to Previous Works 

Previous studies in industrial OCR have relied heavily on 

rule-based OCR systems or preprocessed static images. These 

approaches lack scalability and adaptability to real-world 

environments. Our integration of YOLOv8 with PaddleOCR 

in a live RTSP-based setup represents a significant 

improvement in both adaptability and performance. It aligns 

with recent industry-focused research advocating for deep 

learning-based OCR pipelines in production environments 

[6]. 

 

Practical Implications 

The superior performance of PaddleOCR makes it a reliable 

solution for deployment in semiconductor cleanroom 

environments, where accurate and fast machine status 

recognition is essential. The system can be extended to 

support predictive analytics by incorporating trend 

monitoring or alarm conditions derived from the digit values. 

Its plug-and-play nature also makes it suitable for integration 

into MES platforms or edge-AI deployments in smart 

factories. 

  

 

5.0 CONCLUSION 

 

This study demonstrated the feasibility and effectiveness of 

using a computer vision-based system for automated KPIV 

measurement in legacy industrial machines. By integrating 

YOLOv8 for object detection and PaddleOCR for optical 

character recognition, the system reliably captured and 

interpreted machine interface data in real time from live 

RTSP video streams. The experimental results showed that 

YOLOv8 consistently achieved high detection accuracy 

across varied machine setups, while PaddleOCR 

outperformed traditional OCR engines in both accuracy and 

inference speed. 

The system maintained real-time performance within a 10-

second processing window, successfully logging structured 

machine data into an SQL database. Notably, PaddleOCR 

exhibited robustness under challenging visual conditions, 

such as glare and low contrast, which often hindered the 

performance of conventional OCR tools. These findings 

validate the potential of the proposed deep learning-powered 

video analytics pipeline as a scalable and adaptable solution 

for industrial monitoring applications. 

Overall, this work contributes to the advancement of smart 

manufacturing by enabling non-invasive, real-time status 

recognition in environments where manual data collection or 

retrofitting with digital sensors may be impractical. The 

approach holds promise for broader deployment in cleanroom 

and factory settings, especially when integrated with MES 

platforms or predictive maintenance systems. 
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6.0 RECOMMENDATIONS 

 

In light of the findings and the successful deployment of the 

computer vision-based KPIV monitoring system, it is 

recommended that manufacturing facilities, particularly 

those operating legacy machines, consider adopting deep 

learning-powered video analytics to enhance their 

operational visibility. The integration of YOLOv8 and 

PaddleOCR has proven to be both effective and practical for 

real-time data extraction and scaling this solution across more 

production lines could significantly improve data-driven 

decision-making and reduce manual monitoring burdens. 

Stakeholders responsible for factory automation and digital 

transformation should invest in building infrastructure that 

supports edge AI deployments, such as providing sufficient 

computational resources and stable RTSP camera networks. 

This would ensure that systems like the one presented in this 

study can operate reliably at scale. 

For software developers and system integrators, it is 

advisable to explore integration of the proposed monitoring 

pipeline into existing Manufacturing Execution Systems 

(MES) to enable seamless process monitoring and analytics. 

The inclusion of alarm triggers or anomaly detection modules 

could further enhance the utility of the system by supporting 

predictive maintenance and early fault detection. 

Future studies are encouraged to explore the application of 

this system in more diverse environments, including outdoor 

or high-vibration settings, to test its robustness and 

generalizability. Additionally, expanding the OCR capability 

to handle multilingual displays or handwritten inputs could 

widen the applicability of this solution. Finally, long-term 

performance evaluations under continuous factory operation 

would provide further insights into system reliability and 

maintenance requirements. 
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