

AUTOCAP: A VENDING-BASED SOLUTION TO MANUAL CAPILLARY HANDLING ERRORS

Edrian B. Beren
Paulo T. Mangubat
Joshua Ray Arendain

Carmona Automation and Mechatronics, Test Operations Department
Onsemi Philippines Inc, Golden Mile Business Park SEZ, Governor's Drive, Carmona Cavite
edrian.beren@onsemi.com, paulo.mangubat@onsemi.com, joshuarayarendain@onsemi.com

ABSTRACT

Manual capillary withdrawal in wire bond assembly lines often results in high error rates and frequent misprocessing, leading to significant material scrap. From October 2023 to March 2024, data revealed a substantial number of misprocessing incidents due to manual capillary withdrawal, averaging three scrapped lots per shift.

To address this issue, the AutoCap system was developed using the TRIZ (Theory of Inventive Problem Solving) methodology. It features a magazine-based canister vial mechanism designed to dispense ultra-small components with high precision. Following its implementation in August 2024 and direct integration with wire bonding machines, manual selection and handling errors were significantly reduced.

Most notably, the system achieved zero defects in March 2025, resulting in 0% scrappage and generating \$143,000 annualized hard cost savings. This performance has been sustained for four consecutive months to date. Additionally, AutoCap enhances inventory tracking and reduces the need for manual logging, thereby improving both automation and accessibility.

These results confirm AutoCap's effectiveness in enhancing process reliability, accuracy, and automation in wire bonding operations.

1.0 INTRODUCTION

In high-precision manufacturing environments such as wire bond assembly lines, even minor handling errors can lead to significant production setbacks. One critical component in this process is the capillary, an ultra-small tool essential for wire bonding operations. Traditionally, capillary withdrawal and replacement have been performed manually. While simple in concept, this method is highly prone to errors in practice.

Operators often struggle to identify and retrieve the correct capillary from storage, particularly under pressure or in high-volume production settings. This manual process frequently results in incorrect selection, mishandling, or contamination, all of which contribute to defective bonding operations. The consequences are costly: misprocessed lots, increased material scrap, and extended downtime for rework or recalibration.

To quantify the impact of manual capillary handling on production performance, defect data were systematically collected over a six-month period, from October 2023 to March 2024. The analysis revealed a recurring pattern of capillary-related defects, which significantly contributed to production inefficiencies. As illustrated in Figure 1, a substantial number of these defects were directly attributed to manual handling errors, including incorrect selection, physical damage, and misplacement of capillaries. These issues resulted in an average of three lots being scrapped per shift, representing a considerable loss in material, labor, and operational throughput. The frequency and severity of these defects underscored the need for a more reliable and standardized approach to capillary handling, prompting the investigation and implementation of an automated solution.

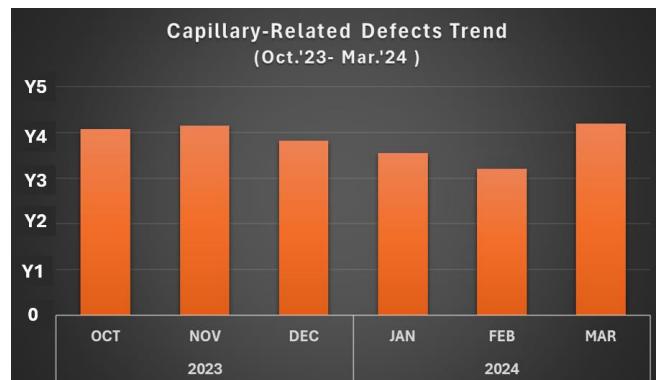


Fig. 1. Capillary-Related Defects Trend. The graph illustrates the trend of capillary-related handling defects observed during the study period.

Further analysis was conducted to examine the distribution of capillary-related defects, as illustrated in Figure 2. The data revealed that the most prevalent issue was incorrect capillary

selection, which directly contributed to multiple instances of lot scrappage.

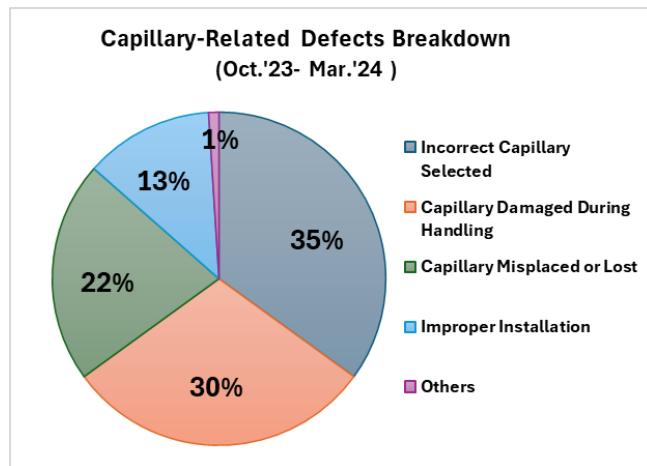


Fig. 2. Defect Type Pie Chart. This shows the percent breakdown of the common capillary manual handling defects.

Recognizing the persistence and impact of these issues, the team conducted a comprehensive analysis to determine the root causes of capillary handling failures. This evaluation identified critical areas requiring improvement, particularly in accuracy, process control, and traceability. These insights served as the foundation for exploring more reliable and efficient solutions aimed at eliminating manual handling errors and enhancing overall process performance.

2. 0 REVIEW OF RELATED WORK OR LITERATURE

Manual capillary handling in wire bonding operations has long posed challenges in semiconductor manufacturing, particularly in terms of precision, consistency, and traceability. Numerous studies have explored technologies related to capillary management, automated dispensing systems, and micro-component handling to address these issues. This chapter reviews existing research and innovations in the field, highlighting both advancements and the ongoing limitations of current practices.

2.1 Manual Capillary Handling and Its Limitations

Capillary handling in wire bonding has traditionally relied on manual processes, where operators retrieve and install capillaries by hand. While straightforward, this method is highly susceptible to human error, especially in high-throughput environments. Manufacturers have attempted to mitigate these issues through procedural controls such as visual aids, operator training, and standardized work

instructions. However, these measures often fall short, particularly under conditions of operator fatigue or production pressure.

2.2 Semi-Automated and Robotic Handling Systems

Advancements in semi-automated systems, including guided pick-and-place tools and robotic arms integrated into bonding machines, have shown promise in reducing handling errors. However, these systems are typically expensive, complex to maintain, and difficult to retrofit into existing production lines. Furthermore, they often lack the flexibility to accommodate different capillary types or sizes without significant reconfiguration.

2.3 Automatic Capillary Cleaning Systems

Sivalingam and Choon (Infineon Technologies) introduced an Automatic Capillary Cleaning System (ACC) aimed at extending capillary lifespan and reducing downtime. Their system increased capillary life from 800,000 to 7 million bonds and reduced capillary change time by over 60%, resulting in a 3% improvement in Overall Equipment Effectiveness (OEE). While effective in prolonging tool life, the ACC does not address the issue of manual capillary selection and dispensing, which remains a major source of error [2].

2.4 Capillary Microfluidics and Passive Dispensing Concepts

Olanrewaju et al. reviewed the evolution of capillary microfluidics, focusing on how capillary action can be harnessed for fluid control in microchannels. Although their work centers on biomedical applications, it highlights the potential of geometry-driven, passive dispensing systems that require no external power or manual intervention [3].

2.5 Contact Dispensing Technologies in Manufacturing

Recent studies on contact dispensing systems, including pneumatic, screw pump, and cylinder-based methods, have explored their use in high-precision manufacturing. These systems are widely used for adhesives and fluids but are not optimized for handling solid micro-components such as capillaries. Their limitations in managing fragile, non-liquid items emphasize the need for a customized dispensing solution [4].

2.6 Vending-Based Inventory and Tool Management

Vending systems have been successfully implemented in industrial settings for managing tools and personal protective equipment (PPE). These systems provide controlled access, real-time inventory tracking, and reduced shrinkage.

However, their application in micro-component handling, particularly in semiconductor manufacturing, remains largely unexplored.

3.0 METHODOLOGY

This study utilized a problem-solving methodology grounded in the principles of TRIZ (Theory of Inventive Problem Solving), a systematic framework developed to address complex engineering and design challenges. TRIZ provides a structured approach to identifying, analyzing, and resolving contradictions within a system, enabling the development of innovative and practical solutions.

3.1 Application of the TRIZ Method

The TRIZ methodology was applied through the following key steps (see Figure 3).

Fig 3 TRIZ Methodology Flowchart. Each step is designed to systematically guide innovation by resolving contradictions and generating inventive solutions.

3.1.1 Problem Identification

The methodology begins with a clear definition of the core problem, focusing on inefficiencies, recurring errors, or limitations within the existing process. This step involves collecting relevant data, observing actual operations, and identifying specific pain points that negatively affect performance, quality, or consistency.

3.1.2 Contradiction Analysis

After defining the problem, the next step is to identify contradictions. These are situations where improving one aspect of the system causes another aspect to deteriorate. Contradictions may be technical, such as increasing speed at the cost of accuracy, or physical, such as a component needing to be both hot and cold. Identifying these conflicts is essential for directing the innovation process.

3.1.3 Selection of Inventive Principles

With the contradictions identified, TRIZ tools such as the Contradiction Matrix are used to determine relevant Inventive Principles. These principles are strategic solutions derived from the analysis of thousands of patents and innovations, offering creative and effective ways to resolve identified conflicts.

3.1.4 Idea Generation and Concept Development

Using the selected Inventive Principles, multiple solution concepts are generated. This stage promotes creative thinking and encourages the exploration of non-traditional approaches to solving the problem.

3.1.5 Evaluation and Refinement

The proposed ideas are then assessed based on feasibility, effectiveness, and alignment with the Ideal Final Result (IFR). The most promising concepts are further refined and prepared for potential implementation or prototyping.

3.2 Summary

By applying the TRIZ methodology, this study follows a structured and innovative approach to problem-solving. The process enables the identification of root causes and supports the development of solutions that are both inventive and practical. This foundation sets the stage for further analysis and implementation in the following chapter.

4.0 RESULTS AND DISCUSSION

This chapter presents the outcomes of applying the TRIZ methodology to address recurring issues in manual capillary handling within wire bonding operations. The results are organized according to the TRIZ framework outlined in Chapter 3, demonstrating how each methodological step contributed to the development of a more robust and efficient system. The discussion includes the translation of selected TRIZ principles into functional design features, a description of the system workflow, and an evaluation of performance metrics.

4.1 Problem Identification and Analysis

Initial process assessments and historical defect data revealed persistent issues in manual capillary handling, including incorrect selection, physical damage, and misplacement. These problems contributed to an average of three lots

scrapped per shift, negatively impacting production yield and operational efficiency. Root cause analysis identified the primary causes as inconsistent manual practices, limited traceability, and a lack of standardized procedures.

4.2 Contradiction Identification and Principle Selection

After defining the problem, the following contradictions were identified. Table 1 shows a sample of the different contradictions identified and analyzed by the team.

Table 1. Contradiction Table

Type of Contradiction	Contradiction	Improving Parameter	Worsening Parameter
Technical	Improving reliability (to ensure consistent and error-free performance) may require increasing device complexity, which could lead to higher costs, more maintenance, and reduced ease of use.	Reliability	Device Complexity
Technical	Improving reliability (to ensure consistent and dependable performance) may require additional checks, redundancies, or validation steps, which could increase time consumption and lead to process delays or time loss.	Reliability	Time loss

To address these challenges, the TRIZ Contradiction Matrix was used to determine appropriate inventive principles. The main contradiction involved the need to improve accuracy, traceability, and ease of operation while simultaneously minimizing system complexity, human involvement, and information loss (see Figure 4).

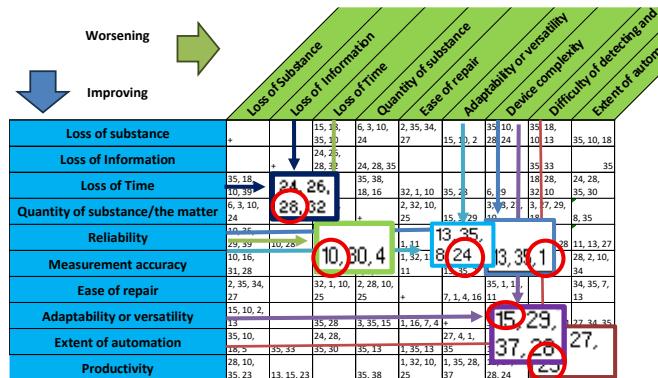


Fig. 4. Snapshot of TRIZ Matrix selection. Illustrates how these engineering parameters were mapped within the TRIZ matrix to identify suitable inventive principles.

The matrix produced several relevant inventive principles. These are summarized in Table 2, along with their associated parameters and corresponding design objectives

Table 2. TRIZ Principles Mapped to Engineering Contradictions.

TRIZ Principle	Mapped Parameters	Design Objective
Principle 1: Segmentation	Reliability vs. Device complexity	Isolate capillaries to prevent misselection and damage
Principle 25: Self-Service	Extent of automation vs. Difficulty of detecting and measuring	Enable autonomous dispensing with minimal operator input
Principle 28: Mechanics Substitution	Loss of time vs. Loss of Information	Replace manual tasks with sensor-driven automation
Principle 10: Preliminary Action	Reliability vs. Time Loss	Pre-load capillaries to reduce setup time and ensure readiness
Principle 15: Dynamics	Adaptability vs. Device complexity	Allow flexible handling of different capillary types
Principle 24: Intermediary	Reliability vs. Adaptability or versatility	Use robotic interface to reduce direct handling risks

4.3 Application of TRIZ Principles

4.3.1 Principle 1: Segmentation

To resolve issues related to incorrect selection and physical damage, the principle of segmentation was applied by redesigning the capillary storage system. Instead of using bulk trays or open containers, capillaries were stored in individual slots within a magazine-based canister. This configuration ensured that only one capillary was accessible at a time, effectively eliminating the risk of multiple selections and reducing the likelihood of mechanical damage during retrieval. This design change contributed significantly to a 100% reduction in scrappage (see Figure 5).

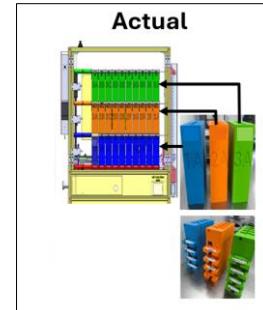


Fig. 5. TRIZ Principle #1. Principle applied in AutoCap's modular capillary magazine design, illustrating how TRIZ Principle 1 guided the development of discrete, damage-resistant component handling.

4.3.2 Principle 25: Self-Service

The system was designed to operate autonomously once the capillaries were loaded. By incorporating the concept of self-service, the system independently managed capillary identification, retrieval, and dispensing without requiring operator intervention. This approach minimized human error, reduced operator workload, and ensured consistent performance across shifts. The implementation of this principle resulted in a 100% decrease in manual handling errors (see Figure 6).

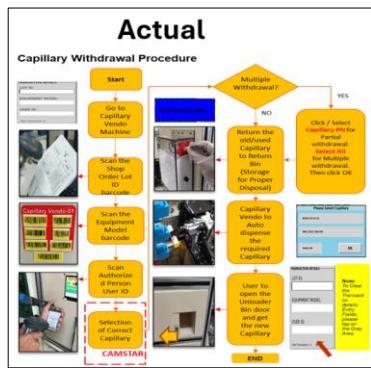


Fig. 6. TRIZ Principle #25. Self-Service, highlighting autonomous operation and minimal operator intervention during dispensing.

4.3.3 Principle 28: Mechanics Substitution

To enhance traceability and eliminate manual selection errors, traditional mechanical and manual operations were replaced with sensor-based automation. The system utilized barcode or RFID scanning to identify capillaries and track inventory in real time. This substitution improved accuracy and enabled seamless integration with digital manufacturing systems. The resulting automation contributed to an annualized hard cost savings of approximately \$143,000 during the evaluation period (see Figure 7).

Fig. 7 TRIZ Principle #28. Visualizes the use of sensors and digital systems (e.g., barcode or RFID) to automate capillary dispensing and real-time inventory updates.

4.3.4 Principle 10: Preliminary Action

To reduce setup time and ensure operational readiness, the system incorporated the principle of preliminary action. Capillaries were pre-loaded into the dispensing mechanism, allowing the system to prepare for dispensing cycles in advance. This proactive approach minimized delays and supported continuous operation (see Figure 8).

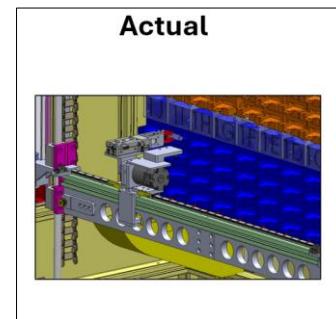


Fig. 8. TRIZ Principle #10. AutoCap can pre-position capillaries in the magazine or pre-align robotic arms to reduce dispensing time and improve efficiency.

4.3.5 Principle 15: Dynamics

The system was designed with dynamic adaptability to accommodate various capillary types and sizes. Adjustable mechanical components and configurable software logic allowed the system to respond to different production requirements without the need for hardware modifications. This flexibility enhanced the system's scalability and usability across multiple production lines (see Figure 9).

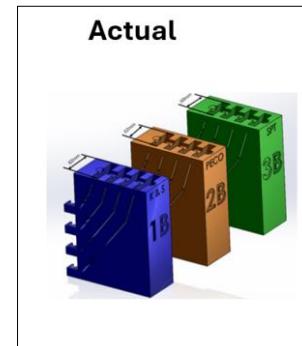


Figure 9: TRIZ Principle #15. The dispensing mechanism or magazine slots can be adjustable to accommodate different capillary sizes or shapes, enhancing flexibility.

4.3.6 Principle 24: Intermediary

To further improve system integration and workflow efficiency, the principle of intermediary was applied. An intermediate mechanism was introduced to facilitate the smooth transfer of capillaries from storage to the dispensing unit. This addition helped streamline the process and reduce the risk of misalignment or jamming during operation (see Figure 10).

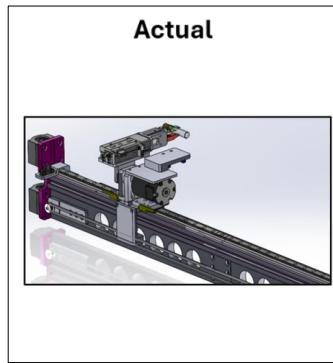


Fig. 10: TRIZ Principle #24: The canister vial acts as an intermediary between the storage system and the robotic arm, ensuring safe transfer of delicate items.

The integration of these TRIZ principles led to the development of a fully functional prototype. The resulting system embodies the conceptual solutions derived from the contradiction matrix and demonstrates how inventive principles can be translated into practical engineering design. The image below shows the actual AutoCap machine developed during this study (see Figure 11).

Fig. 11. AutoCap prototype developed based on TRIZ-derived design principles. This is the result of integrating TRIZ-based features for automated capillary handling.

4.4 System Workflow Overview

The implemented system operates through a fully automated, closed-loop workflow. Capillaries are initially loaded into the canister, after which the system scans and identifies the correct unit. A robotic arm then retrieves and dispenses the capillary, while the inventory is updated in real time. This streamlined process ensures full traceability, consistent operation, and minimal human error throughout the workflow (see Figure 12).

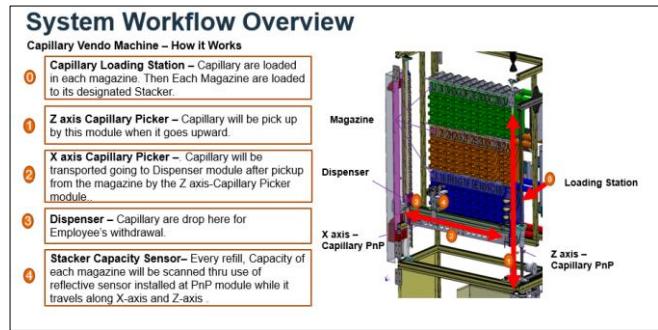


Fig. 12. System Workflow Overview. System workflow of the AutoCap, showing the automated capillary loading, picking, and dispensing process, along with the HMI interface for user control and monitoring.

4.5 Overall System Performance and Impact

The integration of TRIZ-based design principles resulted in significant improvements in capillary handling operations. During the pilot implementation phase, the system significantly reduced manual selection and handling errors. Most notably, the system achieved zero defects in March 2025, resulting in 0% scrappage and generating \$143,000 annualized hard cost savings (see Figure 13).

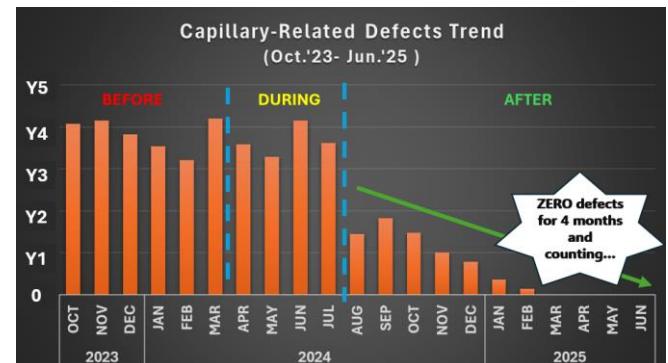


Fig. 13 Baseline vs. Present Data. AutoCap drastically reduced manual errors and mis-issuance, achieving zero defects in March 2025 and sustaining this perfect record for four consecutive months.

In addition to these measurable outcomes, the system supports broader digital transformation initiatives through its smart dispensing mechanism, automated tracking capabilities, and modular design. The successful application of TRIZ principles not only validates their effectiveness in addressing complex engineering challenges but also highlights their value in developing scalable and high-impact manufacturing solutions.

5.0 CONCLUSION

This study demonstrated that persistent and high-impact issues in capillary handling can be fully eliminated rather than merely reduced through the systematic application of TRIZ-based innovation. By comprehensively addressing the root causes of manual handling errors, including inconsistent practices, limited traceability, and the absence of standardized procedures, the AutoCap system was developed as a robust and scalable solution. Operational data confirmed its effectiveness, with zero defects recorded in March 2025 and sustained over four consecutive months to date. This outcome validates the capability of TRIZ methodologies to resolve complex engineering challenges and establishes a new benchmark for reliability, automation, and quality in semiconductor manufacturing.

6.0 RECOMMENDATIONS

Given the successful implementation of the AutoCap system, it is recommended to explore its scalability across various wire bond assembly lines to validate its adaptability to different capillary types and production volumes. To further enhance traceability and data intelligence, integration with Manufacturing Execution Systems (MES) and Industry 4.0 platforms is encouraged. Establishing structured feedback loops between operators and engineers will support continuous improvement in both usability and system performance. Although the system significantly reduces manual handling, targeted training programs should be implemented to ensure smooth adoption, operator confidence, and effective long-term operation.

7.0 ACKNOWLEDGMENT

We sincerely thank everyone who supported and contributed to this research.

Special thanks to **Jesus Coleta**, our Mechatronics Team Leader, for his support in both mechanical design and system software development, which were essential to completing this project.

We also appreciate **Khoie Parra** and **John Gamotin** from our in-house Machine Shop for fabricating the necessary parts.

Lastly, we thank **Mar Fernando**, our Mechatronics Build Technical Expert, for his help with assembly and deployment.

8.0 REFERENCES

1. *J. A. Reyes and M. E. Santos, Principles of Testing, Gordon Pub. Co., Manila, 1989, pp. 8–6.*
2. *R. Sivalingam and Y. L. Choon, “Automatic Capillary Cleaning System for Wire Bonding,” Infineon Technologies, 2020, pp. 3–7.*
3. *A. O. Olanrewaju, A. Robillard, M. Dagher, and D. Juncker, “Capillary Microfluidics in Microchannels: From Passive Dispensing to Biomedical Applications,” Lab on a Chip, Royal Society of Chemistry, 2018, pp. 2323–2347.*
4. *Z. W. Zhong and K. S. Goh, “New Design of Capillaries for Multi-Tier Wire Bonding,” Proceedings of the WSEAS Conference on Electronics, Hardware, Wireless and Optical Communications, Athens, 2004, pp. 487–493. [Online]. Available: <https://wseas.us/e-library/conferences/athens2004/papers/487-403.pdf>*

9.0 ABOUT THE AUTHORS

Edrian Beren is a B.S. Electronics Engineering graduate of Polytechnic University of the Philippines. He has a total of 6 years of work experience in the Semiconductor industry under the Test Operations Department. Currently he is the Circuit Design & Programmer lead for Carmona Automation and Mechatronics Group.

Paulo Mangubat is a Computer Technology Graduate of STI Calamba Laguna. He has a total of 17 years of work experience in the semiconductor industries under the Test Operations Department. Currently he is the mechanical designer for Carmona Automation and Mechatronics Group.

Joshua Ray Arendain is a B.S. Mechanical Engineering graduate of Mapúa University. He has a total of 2.5 years of work experience in the Semiconductor industry under the Test Operations and Cost Department. Currently he is the Project Manager and Mechatronics Engineer for Carmona Automation and Mechatronics Group.