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ABSTRACT 

 

Optimal control over a manufacturing process requires 

monitoring of multiple critical process parameters (e.g. 

temperatures, pressures, flow rates, voltages, etc.) to ensure: 

(1) consistency between tools; (2) consistency over time 

within each tool; and (3) compliance with the prescribed 

recipe. While modern technology makes collection and 

storage of high-resolution within-process data feasible, the 

quantity of such data makes it nearly impossible for engineers 

to effectively monitor, especially in high-volume 

manufacturing where controlling a single process may 

require monitoring of many parameters, for each of many 

different products/recipes, and for each of dozens or even 

hundreds of machines.  

 

This problem may sometimes be addressed by reducing the 

full within-run data to a single parameter such as a mean, 

maximum, slope, etc., which can be easily visualized to 

monitor compliance within each tool, and across tools. 

However, parameterization of this sort is not always feasible, 

for example because the appropriate parameterization is not 

obvious due to the complex shape of the data, or varies widely 

across the different parameters being monitored. 

 

The objective of this work was to develop a more flexible 

platform for process control via monitoring of process tool 

parameters, which could be broadly applied to parameter data 

irrespective of its shape. The resulting platform achieves this 

through the use of unsupervised pattern matching algorithms 

such as dynamic time warping (DTW), allowing engineers to 

monitor and investigate hundreds of pieces of data using a 

simple web-based platform with a few simple visualizations. 

 

1. 0 INTRODUCTION 

 

The need for a new tool parameter monitoring approach 

became clear when engineers noticed that drift in 

performance was related to changes in the shape of chamber 

pressure vs. time within a deposition tool. The engineers 

could use the performance data to identify the ‘ideal’ shape 

of the curve, and could restore performance by restoring this 

shape via tool maintenance; but it was not obvious how to 

parameterize the complex curve for each run, such that 

deviations from the ideal curve could be monitored over time 

within each tool, across dozens of tools, in order to drive more 

effective maintenance. And even if a method were found for 

this parameter, it was likewise not obvious how the approach 

could be generalized and applied to all the other parameters 

measured in the deposition tools. They therefore requested 

help to develop a general platform for monitoring deviation 

of within-run parameter curves. 

 

Put another way, the problem was to define an algorithm to 

capture the deviation between an actual and an ideal curve in 

a single ‘score’, for example the deviation between the actual 

pressure vs. time in a particular process run, vs. the ideal 

pressure vs. time as determined by analysis of downstream 

outcomes. Given such a score, tool maintenance can be 

improved by creating a platform for continuously computing 

the scores of actual process runs, and allowing engineers to 

visually monitor the scores of each tool over time, and the 

differences in scores between tools at any time. To further 

reduce the workload, engineers could be given automated 

alerts based on conventional statistical process control logic 

applied to the scores, such that visual monitoring would only 

be needed when the time for maintenance was near. 

 

2. 0 REVIEW OF RELATED WORK 

 

Not Applicable. 

 

3.0 METHODOLOGY 

 

Although many approaches could be used, it is natural to 

derive the above ‘score’ from some measurement of distance 

between the actual and ideal curves. For example, one could 

compute the score as the mean absolute difference in pressure 

between the actual and ideal curves at each time step, often 

referred to as the ‘Euclidean’ distance. However, this 

intuitive approach suffers from several well-known 

limitations when applied to real process data. For example, 

suppose a deposition process involves applying a pulse of 

electrical current, starting whenever a stable chamber 

pressure is reached. If the duration and magnitude of the pulse 

are important but its exact timing is not, Euclidean distance  
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would be inappropriate, since shifts in the pulse timing would 

yield large Euclidean distances, and thus false alarms. A 

number of similar scenarios can be envisioned, which show 

that naïve Euclidean distance can cause undesirably high 

‘scores’ under real process conditions1. 

 

A well-documented alternative is the DTW distance 

algorithm, which was developed in the 1970’s and has been 

applied in many domains that are similar to within-run 

process data, for example analysis of electrocardiograms1. 

The principle of the DTW algorithm is to compute distance 

by evaluating many potential mappings between the points in 

the actual curve and those of the ideal curve, and then 

choosing the mapping which gives the lowest distance / best 

alignment between the two. This approach creates some 

flexibility in scoring real data, reducing over-estimation of 

deviation by allowing for some translation and distortion. 

 

Various constraints are also commonly applied to the DTW 

mapping process to prevent excessive / unrealistic distortion 

of the actual data, which would lead to under-estimation of 

the real deviation. In addition, variants of the algorithm have 

been created to make it more robust with real data, for 

example the psi-DTW variant, in which some leading and/or 

trailing data points may be ignored during fitting, to 

accommodate issues such as poor ‘cropping’ of the data2. 

 

This approach is used by default for analyzing process data 

in the platform described here, although technically the 

platform can accommodate any algorithm yielding a positive 

number as a ‘score’. Specifically, the platform is based on a 

set of defined ‘signals’, each of which is defined by a process 

tool, recipe name, recipe step, and parameter. Each signal is 

associated with one or more ‘triggers’, consisting of a scoring 

algorithm such as psi-DTW, and a set of parameters to be 

passed for that algorithm. Scoring is performed relative to a 

‘golden pattern’, usually fitted on a specific time period, or 

specific set of runs, defined by the users based on strong 

downstream performance. Each trigger is also associated with 

a set of trigger conditions, for example hard and soft upper 

limits, which are used to generate automated alerts to the 

engineers when the scores computed using the golden pattern 

meet certain conditions. 

 

Data for each signal are monitored continuously, and new 

runs are scored according to the defined triggers, with alerts 

being generated whenever the trigger conditions are met. 

Users are given ownership of signals and triggers, allowing 

them to manage the algorithms, algorithm parameters, and 

alert criteria via a web interface. Users are also able to view 

the score data at any time using commercial business 

intelligence software such as Tableau, Power BI, or Spotfire. 

In addition, users are given a set of web-based utilities for 

building new golden patterns based on historical data, 

allowing them to update the ‘best-known’ parametric curves 

whenever needed. 

 

It is important to note that this approach is best described as 

unsupervised, in the sense that the score only quantifies 

deviation of any kind from the golden pattern. As there are an 

infinite number of possible ways a real curve may deviate, 

including many deviations which will map to the same score, 

no attempt is made to assess whether a specific 

score/deviation is harmful or helpful, i.e. to predict 

downstream performance. The platform exists to let 

engineers see when significant deviations occur, and to let 

them quickly visualize the deviant data, and take action 

without waiting on downstream outcomes. They employ their 

domain expertise in the assessment of what action to take, if 

any. 

 

4.0 RESULTS AND DISCUSSION 

 

The platform has been applied successfully in production for 

monitoring at two factories, where it helps the engineering 

teams to review both tool stability and tool-to-tool variation 

at a glance.  

 

Figure 1 shows the score vs. time for one example signal, 

with each point representing a process run. At a glance, the 

engineer can observe that: (a) there is significant deviation 

from the ideal pattern after each preventive maintenance 

cycle (see for example, 10 Oct), which regresses towards 

ideal behavior over time; (b) the rate of recovery after 

preventive maintenance has been slowing (see for example, 

the more shallow slope of the curve after the 18 Jan cycle 

compared to the 10 Oct cycle); (c) in addition to the cyclic 

behavior around preventive maintenance, there is also a long-

term regression taking place over several months; and (d) a 

major step-change took place around 12 Feb. Such insights 

would be tedious or even impossible to gather by reviewing 

individual run data manually, but are easily acquired from the 

score data, leading to deeper understanding of the process and 

the ability to better engineer maintenance procedures. 

 

 
Figure 1: Example score vs. time data, showing clear structure that 

would be difficult to see when reviewing the raw data manually. 

Viewing scores from the same measurement in more than one 

tool easily reveals tool to tool variation as well, as shown in 

Figure 2, where both tools show regression within the 



33rd ASEMEP National Technical Symposium 
 
 

 3 

maintenance cycle, but one tool (in red) shows consistently 

lower scores / closer-to-optimal within-run behavior when 

compared to the other (in blue). 

 
Figure 2: Score data like the previous figure, except comparing two 

process tools. The tool in red has consistently lower scores than the 

tool in blue, indicating a closer fit to the golden pattern. 

The ease with which the data can be reviewed also promote 

best practices in the form of more frequent and regular 

monitoring, and several instances have been captured as a 

result in which critical tool sensors fell out of calibration. 

Proactive monitoring allows these cases to be captured, and 

recalibration to be triggered automatically. 

 

Figure 3 shows one such example. In this case, the signal 

consists of the ratio of two sensor measurements, the physical 

relationship of which is known, and captured in the golden 

pattern. Deviation of this composite signal over a period of 

months can be seen, and used directly as a means of triggering 

calibration of the underlying sensors. 

 

 
Figure 3: Score data from a composite signal reflecting a fixed, 

known physical relationship. Scores from signals configured in this 

way are a direct reflection of sensor miscalibration, and as such can 

be used to trigger calibration. 

Finally, in at least one case, score data revealed the presence 

of a cooling water leak well in advance of the leak being 

physically discovered. This example is shown below in 

Figure 4, which shows scores for water residual gas analyzer 

signals at various locations in a process. While physical 

evidence of a water leak in the tool was only found in mid 

November (right edge of the figure), the score data clearly 

reveal that the origin of the leak was in mid October (center 

left of the figure). With hindsight, it would certainly have 

been possible to also identify the origin of the leak by looking 

at the raw data in mid October, without the platform. 

However, this is just one of hundreds of signals across several 

machines running constantly in production, so the level of 

surveillance needed for this is not sustainable; a suitably 

defined automatic trigger inside the platform guarantees 

detection with no manual surveillance. 

 

 
Figure 4: Score data from a residual gas analyzer, revealing the 

onset of a water leak (center) nearly one month before it worsened 

to the point of being physically visible (right edge). 

Finally, it is important to remember that reducing a within-

run parametric time series of potentially hundreds or 

thousands of measurements down to a single score represents 

heavy compression, which will not allow engineers to 

diagnose the nature of the deviation or assess its risk. 

Therefore, the platform must always provide a quick way to 

pivot from high-level scores back to the original within-run 

time series data. In the current platform, this is done simply 

by selecting points from the plot of scores vs. time, and then 

clicking to open the corresponding raw data. An example of 

this is shown below, in which some anomalous runs (dashed 

circle, top center of the upper panel) were selected for 

detailed raw data review (lower panel). Raw data from these 

anomalous runs (at bottom) deviated significantly from the 

golden pattern (in gold), as expected. 
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Figure 5: Example of pivoting from high-level observations based 

on scores, back to examination of specific within-run data of 

interest.  

 

5.0 CONCLUSION 

 

While modern technology makes it theoretically possible for 

engineers to monitor nearly every critical parameter in every 

process tool, in practice such surveillance is not possible 

without platforms designed to analyze the data, and point the 

engineers towards only those tools, parameters, and runs that 

they need to attend to. While supervised methods based on 

downstream outcomes may offer a solution in some such 

cases, the resources needed to train and maintain these 

models quickly becomes prohibitive as the numbers of 

parameters, tools, and outcomes increase.  

 

As an alternative, this paper described a platform for within-

run monitoring based on flexible similarity metrics such as 

the DTW distance, which provides more scalability than 

supervised methods, but more utility and flexibility than 

naïve methods like tracking aggregate statistics. This 

platform promotes best practices by making it easy for 

engineers to quickly review within-tool and tool-to-tool 

variation, and to pivot back to the raw within-run data to 

investigate any changes of interest. In this capacity it has 

helped the engineering team to both expose patterns of 

machine behavior not previously known, and to develop 

better, more intelligent processes for tool and sensor 

maintenance and calibration. 

 

6.0 RECOMMENDATIONS 

 

It has already been noted that the platform is not limited to 

the DTW algorithm. However, even when DTW is used, it is 

important to point out while DTW is most intuitively 

employed for time series data, e.g. pressure vs. time within a 

process run, it may be employed for any ordered series. For 

example, the algorithm could be applied to analysis of spatial 

rather than temporal variation. Doing so would require some 

effort to generalize the implementation in code but would 

significantly expand the value of the platform in 

manufacturing, as spatial variations across products, tooling 

and fixturing, or even facility spaces are also important to 

understand and monitor.  
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