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ABSTRACT 

 

Material processing complexity due to wafer-to-wafer 

variation has been one of the major challenges at Western 

Digital. Maximization of wafer usage is critical to meet the 

growing demand. This paper presents how the application of 

Fourth Industrial Revolution (4IR) technologies plays a 

significant role in addressing the challenges in the Testing 

Process. 

 

Using the old method of detection, problematic testers are 

still recurring affecting high quantity of parts being defected 

and re-tested. This is due to delay in pulling out of bad testers 

from the machine, late triggering due to manual checking of 

Technicians from the thousands of Statistical Process Control 

(SPC) charts attended and validated daily. 

 

Through the application of machine learning models for early 

and accurate detection of problematic testers and the 

elimination of manual monitoring activities by technicians, it 

efficiently detects out-of-control testers faster, thus 

preventing the production of high defects and re-testing. It 

also includes a tester auto-eject function when any of the 

machine learning models detect an out-of-control tester. 

Additionally, the model features auto-detection and auto-

notification functions that determine if there's a change in the 

process, such as new specifications or new process changes. 

 

1. 0 INTRODUCTION 

 

Dynamic Performance Testing (DPT) is a testing process that 

screen out-of-specification magnetic head.  Each machine has 

5 testers and each tester measure 1 magnetic head. 

 

The main objective of this system is for the early and accurate 

detection of problematic testers and the elimination of manual 

monitoring activities on the production floor. 

 

High tester-to-tester variation can be due to mis-tests or 

abnormal parametric measurements. The mis-test 

phenomenon occurs when a test is aborted due to a tester 

mechanical problem, either during initial resistance checking 

or during loading to the disk, resulting in incomplete 

parametric data. Mis-test parts are identified using error 

codes. All parts tagged as mis-tests from initial DPT 

measurements will be re-tested and evaluated with other DPT 

machines after sorting. This process requires additional 

resources such as tool capacity, manpower, and materials. 

 

 
Figure 1. Illustration of DPT Machine and Testers 

 

On the other hand, parametric variations occur when tester 

perform differently compared to other tester from the same 

machine. This can be driven by poor calibration and other 

abnormal tester conditions. Both scenarios contribute to high 

tester-to-tester variation, affecting yield. 

 

Before the implementation of this system, mis-test detection 

mainly focused on the count or combination of certain error 

codes produced by each tester. With this method, detection is 

ineffective, resulting in numerous occurrences of testers 

without findings in Failure Analysis (FA). Another detection 

method is through SPC charts, wherein technicians manually 

check and validate out-of-control testers, leading to delays in 

pulling out testers. 

 

2. 0 REVIEW OF RELATED WORK 

 

In this study, the following concepts in anomaly detection 

were explored: 

 

To detect problematic testers due to non-parametric error 

codes, the project investigated the concept of moving 

probability, also known as dynamic or evolving probability. 
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This concept refers to the likelihood of an event occurring, 

which changes over time or based on certain conditions. 

 

The local outlier factor (LOF) is an algorithm introduced by 

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, 

and Jörg Sander in 2000 within the realm of anomaly 

detection2. It aims to identify anomalous data points by 

assessing the local deviation of each point in relation to its 

neighboring points. This approach is rooted in the concept of 

local density, where the proximity of a data point to its k 

nearest neighbors is utilized to estimate its density. By 

comparing the density of a point to that of its neighbors, 

regions of similar density can be discerned, while points 

exhibiting notably lower density are flagged as outliers. 

 

Another anomaly detection concept used in this study is 

Principal Component Analysis (PCA). Karl Pearson is 

credited with the development of PCA in 1901. PCA is 

commonly used for data preprocessing for use with machine 

learning algorithms. It can extract the most informative 

features from large datasets while preserving the most 

relevant information from the initial dataset. This reduces 

model complexity, as the addition of each new feature 

negatively impacts model performance, a phenomenon 

commonly referred to as the 'curse of dimensionality. 

 

3.0 METHODOLOGY 

 

The system developed to address problematic testers is 

commonly known as Tester Anomaly Detection (TAD). TAD 

is composed of 4 different algorithms, Flaggy, Local Outlier 

Factor (LOF), Yield Parametric Ratio (YPR) and Principal 

Component Analysis (PCA). 

 

3.1  Flaggy 

 

One persistent problem the TAD system has addressed is to 

reduce the occurrences of mis-tested magnetic head due to 

tester mechanical defects. Mechanical defects are problems 

because of tester’s physical condition, or testing machine 

setup problems such as alignment issues, contact issues, and 

other electrical issues. Flaggy checks occurrences of at least 

5 mis-tested parts out of ten consecutive tests in a moving 10 

detection window. 

 

Figure 2. X denote mis-tested parts while the check symbol indicates 

that the measurements were taken successfully.  

 

3.2  Local Outlier Factor (LOF) 

 

To address parametric problems, the team needed to ascertain 

whether errors stemmed from inaccurate measurements by 

out-of-control testers or were product-related. Given that 

products processed in a single machine originated from the 

same job, it was reasonable to assume that parametric 

measurements at a given time would not deviate significantly 

from each other. Hence, the Local Outlier Factor (LOF) and 

Yield-Parametric Ratio (YPR) were developed to compare 

parametric measurements and tester yields at the machine 

level.  

 
Figure 3. In the illustration above, clearly the highlighted tester behaves 

differently.  The application of LOF algorithm, would capture this much 
earlier in the tester's life preventing the exposure of other magnetic head to 

this problematic tester. 
 

LOF compares parametric measurements captured by each of 

the 5 testers to those of the other testers in the same machine. 

It starts off by calculating the LOF value for every parameter 

measurement in a 15-minute time range. It is based on a 

concept of a local density, where locality is given by k nearest 

neighbors whose distance is used to estimate the density. By 

comparing the local density of an object to the local densities 

of its neighbors, we can identify regions of similar density, 

and points that have a substantially lower density than their 

neighbors. The algorithm then uses these LOF values to spot 

outlier behavior of a tester in comparison with the other 

testers in the same machine. 

 

3.3  Yield Parametric Ratio (YPR) 

 

YPR or Yield Parametric Ratio is similar to LOF, but instead 

of parametric measurements, it compares parametric yield of 

each tester to the yield of all other testers in the same 

machine. Parametric yield is calculated by getting the ratio of 

parts tested within the parameter spec limit and total number 

of parts tested. We calculate this for all parameters in each 

tester. Like what the LOF does, the algorithm then uses these 

YPR values to spot outlier behavior of a tester in comparison 

with other testers in the same machine. Capturing 
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problematic testers that would have exposed more parts, 

causing issues otherwise. 
 

 
 
Figure 4. Illustration of how YPR detect outlier tester. 

 

3.4 Principal Component Analysis (PCA) 

 

Principal Component Analysis or PCA which checks 

parametric measurements of all testers. The algorithm 

performs principal component analysis to reduce the 

dimensionality of the dataset as we are processing all data 

from production testers. 

 

 
Figure 5. Illustration how PCA detects outlier tester. 

 

In the above illustration, one dot is a tester that is plotted in a 

2-dimensional space representing all its electrical parameters. 

Then, 7 unsupervised learning algorithms3 are performed to 

identify outlier testers. These are: 

 

• Angle-based outlier 

• Cluster-based LOF 

• Feature Bagging LOF 

• Histogram-Based Outlier Detection 

• Isolation Forest 

• K-Nearest Neighbor 

• Average method K-Nearest Neighborhood. 

 

If at least 4 out of these 7 algorithms identify a tester as an 

outlier, the tester is considered out of control. 

 

3.5 Implementation 

  
Figure 6. TAD Infrastructure 

 

Testing produces a CSV file output after each test which is 

then loaded to Real-time Parametric Monitoring or RTPM 

database which is the main data source of the detection 

algorithms. 

 

The algorithms are triggered through Windows Tasks 

Scheduler and when an anomalous tester is detected, the TAD 

server sends a signal to the machine by inserting a record to 

a data table in RTTC database to eject that tester out of the 

machine automatically, thus preventing possible further 

incorrect or invalid test results. 

 

To implement the machine learning models, the team setup a 

MySQL database where all the test parametric values get 

stored in real time. These data are then use by the TAD server 

for model inferencing. Essentially, applying the algorithms 

discussed earlier. 

 
Figure 7. Implementation Overview 
 

3.6 Splunk Visualization 

 

Alongside the Machine Learning Models implemented on the 

production floor, Splunk dashboards aim to monitor the 

health of machine learning models. One of these is the Model 

Accuracy Summary, which shows the Detection Accuracy 

Level per Product. Within the dashboard, users can select the 

product they wish to check. The bar chart displays how many 

testers each model detected, while the line chart represents 

the detection accuracy. For each model, a summary of 

findings is also provided, indicating where specific tester part 

defects occur, thus enabling accurate improvement efforts. 
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Figure 8. Model Report Dashboard for Detection Accuracy. Detection 
accuracy refers to the proportion of testers with findings correctly identified 

by the Machine Learning Model out of the total number of testers detected 

by the model. 

 

 
Figure 9. Model Diagnostic Dashboard for Model Performance Visualization 

 

Figure 9 depicts another dashboard called the Model 

Resource Performance visualization, designed to monitor 

server performance, and ensure that each model operates 

within the normal running time per batch. 

 

 
Figure 10. Model Configuration Dashboard 

 

Another visualization is dedicated to detecting any new 

specifications or recipes introduced in production that require 

inclusion in the model configuration. Figure 10 provides an 

example of an alerted recipe.ini file that has not yet been 

added to the model configurations. 

 

All these visualizations have an auto-notification feature that 

alerts the Test Team about changes in the model. 

 

 

4.0 RESULTS AND DISCUSSION 

 

Upon the implementation of this Machine Learning models,  

Below problems were addressed. 

 

4.1 Reduced High Tester-to-Tester Variation 

 

The initiative to address delayed triggering in problematic 

testers has yielded impressive results, notably reducing mis-

tests by 58%. This improvement is attributed to the successful 

implementation of a real-time detection system for tester 

problems. The introduction of this system not only enhances 

the efficiency and accuracy of our testing processes but also 

contributes to significant resource savings. With fewer mis-

tests, there's a reduced need for re-testing, leading to savings 

in tool capacity, manpower, and materials. This streamlined 

approach not only optimizes our operational efficiency but 

also translates into tangible cost savings, further reinforcing 

the value of investing in technological advancements for 

process improvement. 

 

4.2 Elimination of Manual Monitoring 

 

The introduction of this system marks a significant 

advancement by removing the necessity for manual 

monitoring tasks previously undertaken by technicians to 

identify and resolve issues with problematic testers. Prior to 

the system's implementation, technicians were required to 

dedicate a substantial portion of their time, nearly 70%, 

towards meticulously managing a vast array of approximately 

1800 Statistical Process Control (SPC) charts each day. These 

charts were essential for scrutinizing the performance of the 

numerous testers utilized in the production process. This 

labor-intensive process not only consumed valuable time but 

also posed a considerable challenge in promptly addressing 

emerging issues and ensuring the smooth operation of the 

production line. With the adoption of automated monitoring 

and detection capabilities provided by the new system, 

technicians can now redirect their focus towards more 

strategic tasks, thereby enhancing efficiency, accuracy, and 

overall productivity within the manufacturing environment. 

 

4.3 Improve Detection Accuracy 

 

By enhancing detection accuracy, the system is able to 

identify genuine tester issues more effectively, resulting in a 

significant improvement from detecting issues in only 32% 

of testers to identifying problems in over 90% of testers with 

findings. This substantial increase in accuracy ensures that a 

higher percentage of potential issues are captured and 

addressed, thereby enhancing overall quality control and 

reducing the likelihood of defective products reaching the 

market. 

 

Table 1. Summary of KPI Improvement 

KPI Unit 
%Improvement from 

 Baseline 

Material Damage Rate % 58% 
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Detection Accuracy % 181% 

Labor Productivity % 75% 
    

 

5.0 CONCLUSION 

 

The adoption of Fourth Industrial Revolution (4IR) 

technologies within our manufacturing site represents a 

transformative step towards enhancing efficiency, 

productivity, and yield. By integrating cutting-edge 

technologies such as automation, Internet of Things (IoT), 

artificial intelligence (AI), and data analytics into our 

operations, we're revolutionizing traditional manufacturing 

processes. This technological evolution enables us to 

streamline operations, optimize resource utilization, and 

minimize downtime through predictive maintenance and 

real-time monitoring. Additionally, leveraging AI and 

advanced analytics enhances decision-making capabilities, 

enabling us to identify and address inefficiencies proactively. 

As a result, our manufacturing site experiences improved 

throughput, reduced cycle times, and increased overall yield. 

The adaptation of 4IR technologies not only enhances our 

competitive edge but also positions us for sustained growth 

and success in the rapidly evolving manufacturing landscape. 

 

 

6.0 RECOMMENDATIONS 

 

It is recommended that the learnings and improvements made 

in this project be disseminated to other similar processes to 

enhance detection capability, efficiency, and productivity. 
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