# PROCESS SIMPLIFICATION THROUGH ELIMINATION OF PRE-CUT, COVERLAY AND DE-TAPE PROCESS FOR MEMS INSTRIP PACKAGES

<u>Eric G. Espino</u> <u>Christopher Dela Cruz</u> <u>Sotero Malabanan</u>

Integrated Lines / Assembly Operations 1 STMicroelectronics, Inc. 9 Mountain Drive, LISP 2, Calamba 4027 Laguna, Philippines, eric.espino@st.com, christopher.delacruz@st.com, sotero.malabanan@st.com

#### ABSTRACT

This paper will discuss how our project supported cost improvement as one of the organizational goals of the company last 2019. Project focuses on analyzing the IDM spending and process simplification at assembly plant. Calamba has two process bricks for MEMS devices, MEMS with FT1 (Instrip test) and FT2 (Singulated test). MEMS Instrip requires a special process called Pre-cut. Comparing the two MEMS package group, MEMS Instrip has a higher cost in terms of process flow which Pre-cut process incurred additional cost for saw blade and coverlay tape.

Pre-cut process removal significantly improved the Cycle time and indirect material consumption (saw blade and coverlay tape). Details of the journey will be further appreciated as we read and understand the story behind the success of this project.

# **1.0 INTRODUCTION**

Our project supported BEM&T – Calamba 2019 Top Page thru relentless cost reduction effort which was one of the plant top priority highlighted in blue box below.



| BUSINESS RESULTS                                                                                                                                                                                                                                                                                                                              |                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| \$<br>CORA Expenses - Adherence to CORA Target<br>Contribution to Gross Margin - Direct Variation (at Budget Fx rate) DV sequential continuous<br>mprovement coupled with adherence to CORA Direct Variance Target<br>Time to Unit cost - Adherence to target for NPI<br>Unit cost trend (Mature devices) - Relentless cost reduction efforts | ≤100%<br>Qn+1 DV% better<br>than Qn DV%<br>100%<br>-3.0% |
| inishing yield loss - Yield loss (PPM)                                                                                                                                                                                                                                                                                                        | 3250                                                     |

In 2019, the Singulation blade is the Top Assembly IDM Cost Consumption Contributor as shown in Graph1.



Graph 1: Assembly IDM Cost for 2019

2SD0138Y is the material code for saw blades used in MEMS product. It is the Top 2 blade consumption which is used for Pre-cut and Full-cut process dedicated to MEMS devices as shown in Graph 2.



Graph 2: Blade Consumption per Matcode for 2019

# Breakdown showed a total of 41K USD or 24% of 2SD0138Y blade is used for Pre-cut process alone for FT2 in 2019 as illustrated in Graph 3.



Graph 3: 2SD0138Y Cost Breakdown

Below are the 2019 monthly cost & consumption quantity of FT2 Pre-cut blade (2SD0138Y blade) as shown in Graph 4.



Graph 4: FT2 Pre-cut Blade Consumption and Cost 2019

Increasing volume in Instrip MEMS packages and new banner of products being developed by NPI projected to run on 2020 means an increase in IDM consumption per process. The challenge is to reduce pre-cut blade consumption observed from January to December 2019 for MEMS Instrip.

Our objective is to reduce pre-cut blade consumption for MEMS Instrip packages from an average of 61 pcs/month to 37 pcs/month or 60% reduction by February' 2020 as shown in Graph 5.



Graph 5: Target Consumption Quantity per month

# Understanding the Pre-cut Process:

Pre-cut process function is to relax the molded strips and manage the warpage that could influence electrical testing alignment and response during trimming at FT1 Instrip testing.

1) Molded Strip will undergo pre-cut process (Input)



2) Pre-cut Process using Saw Blade to partially cut the molded part of the strip.



3) Molded strip is partially cut.



4) Pre-cut strip will now undergo coverlay taping process.











5) Pre-cut Strip with Coverlay Tape (Output Strip)



#### 2. 0 REVIEW OF RELATED WORK

Checking from other previous studies related to pre-cut, only specific MEMS product for Instrip test is using this coverlay material, other devices don't require this as part the process. Further checking was benchmarked to ST Malta where we have the same set-up however, there was no study on how to reduce pre-cut blade consumption on this product.

### **3.0 METHODOLOGY**

3.1 Understanding the MEMS Process Flow

Below shows comparison between Singulated (FT1 only) and Instrip Testing (FT1 + FT2) as shown.

Only MEMS Instrip devices have the Pre-cut Process flow



Shaded in yellow are the four additional process steps required for FT2 MEMS Instrip compared to FT1 MEMS which is the focus of this study. These steps at FT2 MEMS Instrip device do not have significant purpose but rather incurred negative effect in processing.



Graph 6 shows an average of 48% of rework lot for Instrip MEMS due to detached coverlay tape. Detached coverlay tape happens when lot was staged for about above 8 hours prior testing. This detached coverlay tape will be endorsed back to coverlay taping for re-conditioning also known as rework which is a Non-Value Adding Activity.



Graph 6: MEMS Instrip Rework Lot/Week

Shown is a sample illustration of strips being reworked due to detached coverlay tape on molded strip.



The following options were identified and assessed based on impact on Cycle time, Cost, Quality and Feasibility. Among the options, removal of Pre-cut process removal was chosen based on the scoring with highest points.

## Table 1: Selection Criteria

| Option                                                     | Cycl<br>e<br>time                 | Cost                                                                      | Quality                                                | Feasibility                                                                                                       | *Total | Remarks                                                                                                                       | Decision |
|------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------|----------|
| Selection<br>criteria                                      | Sc<br>1- Lo<br>2 -<br>R<br>9<br>R | ale :1-3-9<br>w Reduction<br>- Medium<br>eduction<br>9 – High<br>eduction | Scale :1-3-9<br>9 – Low<br>Impact<br>1- High<br>Impact | Scale :1-3-9<br>9 - Feasible w/<br><10k<br>investment<br>3 - Feasible w/<br>>10k<br>investment<br>1- Not feasible |        | *The higher the bo                                                                                                            | tter     |
| Removal of<br>Precut<br>Process                            | 9                                 | 9                                                                         | 9                                                      | 9                                                                                                                 | 36     | Removing<br>precut process<br>is directly<br>proportional to<br>decrease the use<br>of precut blades                          | GO       |
| Rejuvenated<br>blade to be<br>use for<br>precut<br>process | 1                                 | 1                                                                         | 3                                                      | 9                                                                                                                 | 14     | Blade<br>rejuvenation is<br>additional cost<br>for the supplier<br>to perform the<br>rejuv activity.                          | NO<br>GO |
| Extend<br>blade life<br>for precut<br>process              | 9                                 | 9                                                                         | 3                                                      | 9                                                                                                                 | 30     | Blades use from<br>precut process<br>already<br>maximized<br>through Blade<br>life extension<br>project for other<br>devices. | NO<br>GO |

Risk Assessment was performed to identify impact on Pre-cut process removal. Risk identified will be validated to confirm impact of change.

## Table 2: Risk Assessment



FMEA review was performed. The characteristics identified were already included in substrate FMEA.



Before we proceed to the validation, we checked the MSA – (measurement system analysis) on warpage to ensure that there will be no measurement issue. The equipment used for warpage is smart scope.

For Stability MSA – all points are in control limit and these indicates that the measurement system can be use anytime.

| and the second second        |                  |                    |                                 |                |          |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------|------------------|--------------------|---------------------------------|----------------|----------|--------|---------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Evaluated By                 | Louiseano, Mera  | elle N.            |                                 |                |          |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date                         | 22-Jun-2920      |                    |                                 |                |          | -      |         |         |          | Mariables Control Chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Gage ID Hemilier             | SSS004IDMT00     | 95                 |                                 |                |          | _      |         |         | <u> </u> | warmones control chart                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Manufacturer/Model           | OOP Smart Sco    | çe                 |                                 |                | 0.0991   | 0.1009 | 0.0995  | 0.1009  | 0.1011   | XBar of Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Location                     | B1F1/Frank of La |                    |                                 |                |          |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Deptritection                | Assy Mig/ Proce  | res Combod         |                                 |                | 0.1002   | 0.0069 | 0.1004  | 0.0006  | 0.1003   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Parameter(s)                 |                  |                    | 941                             | ( Limit(a)     | 0.1008   | 0.0990 | 0.1008  | 0.1008  | 0.1008   | UCL-8.18072287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Package : DFN:Mems           |                  |                    | LSL                             | USL            |          |        |         | _       |          | 1 annu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reasured : X-axis            |                  |                    |                                 |                | 0.1007   | 0.0990 | 0.1008  | 0.1000  | 0.1008   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -amage Crister (A)           |                  |                    | U MM                            | U.US MIN       | 0.1001   | 0.0000 | 0.000   | 0.1000  | 0.1000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                  |                    | 0.06 PPP                        | 0.18 (110)     |          |        | _       |         |          | a and a second sec                                                                                                                                                                                                                                             |
| Boord, Term Bhalilley        | -                |                    |                                 |                | 0.1004   | 0.0992 | 0.1001  | 0.0994  | 0.0996   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Table C. Offerchiters Provin |                  |                    |                                 |                | 0.0000   | 0.0000 | 0.0004  | 0.0004  | 0.0004   | an <u>1 1977</u> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| control Landa;               |                  | X-Charl            |                                 | -chart         | 0.1902   | 0.1000 | 0.000   | 0.0000  | 0.0000   | 0.0995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| uct                          |                  | 0.1007             |                                 | 3.0022         | 0.0999   | 0.0994 | 0.0995  | 0.0990  | 0.0997   | (I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CL .                         |                  | 0.1009             |                                 | 0010           |          |        |         |         |          | and the second s |
| LCL                          |                  | 0.0904             |                                 | 0              | 0.1902   | 0.1001 | 0.1004  | 0.1000  | 0.1902   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Smort-Terris Stabile?        | 188              |                    |                                 |                | 0 1004   | 0.0962 | 0 1004  | 0.0004  | 0.0005   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| corney                       |                  |                    |                                 |                |          |        |         |         |          | au •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| landard Used                 |                  | Ga                 | rge Block                       |                | 0.1003   | 0.1001 | 0.0000  | 0.0996  | 0.1000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rue Vatue                    | 0.5              | 101/10             | 1 mm                            | 7 mm           | 0.0907   | 0.0004 | 0.1000  | 0.1000  | 0.0004   | Matter The closer care advised and a loss the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Auf                          |                  | 1001               | 0.9999                          | 7.0001         |          |        |         |         |          | none: The sigma was calculated using the range.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              |                  | ingen 1            | 0.0001                          | 0.0001         | 0.0997   | 0.1000 | 0.1002  | 0.1001  | 0.0993   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FOD>(Q                       | 0.3              | 0103               | 0.5749                          | 0.7390         | 0.0004   | 0.0000 | 0.0000  | 0.0000  | 0.1000   | R of Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| agniticani bias /            |                  | 90                 | No                              | 190            | 0.0000   | 0.0000 | 0.1000  | 0.0000  | 0.1000   | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| searity Summary:             |                  |                    |                                 |                | 0.1008   | 0.0992 | 0.1008  | 0.1010  | 0.1008   | URL-6 and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Standards Used               |                  | Gau                | pe Dhock                        |                | 0.0004   | 0.1000 | 0.0000  | 0.0000  | 0.1000   | 0.002 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Free Values                  | 0.1 mm           | 0.5 mm 1           | 3                               | 7              | 0.0000   | 0.1000 | 0.1000  | 0.0000  | 0.1000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| or Each Standard             |                  |                    |                                 |                | 0.0995   | 0.0991 | 0.1010  | 0.1009  | 0.0995   | 3 62005-1//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| X                            | 0.1001           | 0.5000 0.1         | 999 3.000                       | 2 7.0001       |          |        |         |         |          | 2 AV01 AV02 AV02 AV02 AV02 AV02 AV02 AV02 AV02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Significant Litearity?       | NO               |                    |                                 |                | 0.0996   | 101009 | 10,0666 | 10.1907 | 0.0996   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| peakability & Reprodu        | soldility Summar | W1                 |                                 |                | 0 1008   | 0.0965 | 0.1008  | 0.1008  | 0 1000   | ILE SHOOL NOT THE PROPERTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| atimate of Variance          | Variation        | To Total Variation | <ul> <li>% Toterance</li> </ul> | % Contribution |          |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Y                            | 0.01210022       | 9.39               | 4.3                             | 0.2            | 0.0999   | 0.1001 | 0.1003  | 0.1003  | 1 0.1002 | LCL-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (Y                           | 0.00180413       | 1.29               | 0.6                             | 0.0            | 0.0000   | 0 1001 | 0.1001  | 0.0000  | 0.1000   | a.mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| neraction                    | 0.00180419       | 1.29               | 0.6                             | 0.0            | 2.000    | 2.1981 |         |         | 1.100    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                              | 0.01327341       | 9.48               | 4.3                             | 0.2            | 0.1002   | 0.0969 | 0.1003  | 0.1003  | 0.1000   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| W .                          | 0.30999023       | 220.71             | 99.9                            | 99.8           | 0.1010   | 0.1000 | 0.0003  | 0.1008  | 0.1008   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ŷ                            | 0.00027520       | 200.61             | 100.0                           | 100.0          | 1 4.1010 | 0.1009 | 0.0093  |         | 0.000    | al •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | 30               |                    |                                 |                | 0.1004   | 0.1003 | 0.1003  | 0.1008  | 0.1002   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.40                         | 4 16 174         |                    |                                 |                |          | -      |         |         |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Tratio                       | 0.06481          |                    |                                 |                | 0.0966   | 0.1002 | 0.0000  | 0.0000  | 0.1004   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| an able b                    | Man              |                    |                                 |                |          |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - Participa (                |                  |                    |                                 |                |          |        |         |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

All point are in control limits and these indicate that the Measurement system can be use anytime.

#### MSA - Bias



Bias across the measurement range is not significant (Prob ItI > 0.05)



Equipment bias is Linear across the process range. (Prob ItI > 0.05)

Focus will only be on Eliminating Pre-cut process.

Detached coverlay issue is associated with pre-cut process and can be eliminated, thus, also eliminate rework at assembly. Pre-cut blade for singulation can be reduced by removing pre-cut process. It also eliminates the use of coverlay tape and oven bake process.

# Validation Plan:

|                        |                    |              |         |                     | Y                                                            | alidation Plan |                                       |                      |      |       |        |                |
|------------------------|--------------------|--------------|---------|---------------------|--------------------------------------------------------------|----------------|---------------------------------------|----------------------|------|-------|--------|----------------|
| Y (or mini Y)          | Unit of<br>Measure | Y treated as | x       | True<br>nature of X | Levels of X, if<br>discrete or<br>converted into<br>discrete | Hypothesis     | s Statement<br>Alternative Hypothesis | Statistical Test     | Beta | Alpha | Delta  | Sample<br>Size |
| Strip Warpage          | mm                 | Cotinuous    | Process | Discrete            | With Precut<br>Without Precut                                | но: µwp = µwop | на: µwp < µwop                        | 2 means test         | 0,1  | 0.05  | 2.7    | 10 strips      |
| Damaged<br>Substrate   | ррм                | Discrete     | Process | Discrete            | With Precut<br>Without Precut                                | Ho: Pwp = Pwop | на: Рwp < Рwop                        | 2 proportion<br>test | 0,1  | 0.05  | 0.0001 | 50 strips      |
| Test Failure<br>_Noise | Percentage         | Discrete     | Process | Discrete            | With Precut<br>Without Precut                                | Ho: Pwp = Pwop | на: Рwp < Рwop                        | 2 proportion<br>test | 0,1  | 0.05  | 0.001  | 4281           |
| Bin 6 O/S              | Percentage         | Discrete     | Process | Discrete            | With Precut<br>Without Precut                                | Ho: Pwp = Pwop | на: Рwp < Рwop                        | 2 proportion<br>test | 0,1  | 0.05  | 0.006  | 713            |
| Handler Error          | # of<br>occurrence | Discrete     | Process | Discrete            | With Precut<br>Without Precut                                | Ho: Pwp = Pwop | Ha: Pwp < Pwop                        | 2 proportion<br>test | 0.1  | 0.05  | 0.05   | 85 strips      |

There are 5 responses identified for this project that need to validate, strip warpage, damaged substrate, test failure, handler error.1 continuous and 4 discrete to be validated with and without pre-cut. We used 10% Beta risk and 5 % Alpha Risk . We determine the critical difference to arrive at this sample size.

# Statistical Testing - Strip Warpage



At better than 95% confidence level, there is significant difference between Pre-cut and No pre-cut strip in terms of strip warpage with P value of < 0.0001.

#### Statistical Testing - Damaged Substrate



At 95% confidence level, with P value of 1.000 without precut will not induce damage substrate at Instrip testing.

#### Statistical Testing - Test Failure (Noise)



Remarks: At 95% confidence level , *there is significant difference* between Pre-cut and No pre-cut strip in terms of Test failure Noise with P value of < 0.0001.

#### Statistical Testing – Test Failure (O/S)

| Respo                             | nse                                 | Process Step                                                                                                           | Practical Problem                                                                                                      | Test Plan           | Hypoth                                                                                               | esis Sta                                                                                                            | tement                                  |                                            | Conclusion                                                              |
|-----------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------|-------------------------------------------------------------------------|
| Test Failure – (O/S) Instrip Test |                                     |                                                                                                                        | Will precut strip result to lower test<br>failure in terms of O/S (open / Short)<br>compared to strips without precut? | 2 Proportio<br>Test | n Ho: I<br>Ha: I                                                                                     | There is No significant<br>difference between with<br>precut and non precut<br>strip in terms of O/S<br>Test Result |                                         |                                            |                                                                         |
| Two                               |                                     |                                                                                                                        | <ul> <li>Contingency Analysis of O/S By Strip Condition<br/>(Mosair Plat)</li> </ul>                                   | •                   | <ul> <li>Contingency</li> </ul>                                                                      | Table                                                                                                               |                                         |                                            |                                                                         |
| Props                             | Inputs                              | Comments                                                                                                               | 1.00                                                                                                                   |                     | Count<br>Total %                                                                                     | Fail                                                                                                                | Pass                                    | Total                                      | 1                                                                       |
| α.                                | 0.05                                | Typically.05                                                                                                           | 0.75 -                                                                                                                 |                     | Col %<br>Row %                                                                                       |                                                                                                                     |                                         |                                            |                                                                         |
| β                                 | 0.10                                | Typically 10 or 20                                                                                                     | 01.6%                                                                                                                  | Paul                | 2 With Precut                                                                                        | 0.28                                                                                                                | 2840                                    | 285                                        | 6<br>D                                                                  |
| P <sub>2</sub>                    | 0                                   | 0 <pt<pg<1< th=""><th></th><th></th><th>Without Precut</th><th>0.56</th><th>2838</th><th>285</th><th>6</th></pt<pg<1<> |                                                                                                                        |                     | Without Precut                                                                                       | 0.56                                                                                                                | 2838                                    | 285                                        | 6                                                                       |
| P1                                | 0.006                               | 0 <pg<pg<1< th=""><th>0.25</th><th></th><th></th><th>0.32</th><th>49.68</th><th>50.00</th><th>D</th></pg<pg<1<>        | 0.25                                                                                                                   |                     |                                                                                                      | 0.32                                                                                                                | 49.68                                   | 50.00                                      | D                                                                       |
| N                                 | 713                                 | Sample N from each populat                                                                                             | 0.00 With Precut Without Pr                                                                                            | ecut                | Total                                                                                                | 0.63                                                                                                                | 99.37<br>5678<br>99.40                  | 5713                                       | 2                                                                       |
|                                   |                                     |                                                                                                                        | Step Condition                                                                                                         | Те                  | ests                                                                                                 |                                                                                                                     |                                         |                                            |                                                                         |
| D of                              | 10                                  |                                                                                                                        |                                                                                                                        |                     | N DF -LogLike                                                                                        | RSquare 0                                                                                                           | <b>100</b><br>103                       |                                            |                                                                         |
| Practice                          | al Concl                            | usion:                                                                                                                 |                                                                                                                        | 10                  | est ChiSquare I<br>kelhood Ratio 0.118                                                               | 0.7308                                                                                                              |                                         |                                            |                                                                         |
| At 95<br>Precut<br>0.431          | % confide<br>t and Nor<br>9. No pre | nce level , there<br>a precut strip in t<br>cut is comparable                                                          | is no significant difference betwee<br>erms of O/S test result with P value<br>e with POR.                             | en n<br>e of b      | bler's<br>sctTest Prob Alternat<br>et 0.4309 Prob(Cot<br>oph 0.6987 Prob(Cot<br>Tail 0.6538 Prob(Cot | ive Hypothe<br>In Past) is gre<br>In Past) is diff                                                                  | sis<br>vater for Strip<br>ferent across | Condition a<br>Candition a<br>Strip Condit | With Recut than Without Recut<br>Without Precut than With Precut<br>Son |

At 95% confidence level, there is no significant difference between Pre-cut and No pre-cut strip in terms of O/S test result with P value of 0.4319. No pre-cut is comparable with POR.

#### Statistical Testing - Test Handler Error



At 95% confidence level, there is no significant difference between Pre-cut and No pre-cut strip in terms of test handler error with P value of 1.000.

#### FT1 Test Result (Instrip) - Existing Nest Tool



# No Pre-cut FT2 & QA Test Result



FT2 & QA Test Result Passed with 99.29% Yield vs 98% Yield Target.

#### Validation Result:

|                        |                    |                 |         |                | Va                                        | idation Plan    | and Results               |                      |      |       |        |              |         |                                                 |
|------------------------|--------------------|-----------------|---------|----------------|-------------------------------------------|-----------------|---------------------------|----------------------|------|-------|--------|--------------|---------|-------------------------------------------------|
|                        | 1157               | v i             |         | True           | Levels of X, if                           | Hypothesi       | 6 e e 1                   |                      |      |       |        |              |         |                                                 |
| Y (or mini Y)          | Unit of<br>Measure | T treated<br>as | x       | nature of<br>X | discrete or<br>converted into<br>discrete | Null Hypothesis | Alternative<br>Hypothesis | Test                 | Beta | Alpha | Delta  | Size         | p-value | Decision                                        |
| Strip<br>Warpage       | m                  | Cotinuous       | Process | Discrete       | With Precut<br>Without Precut             | Ho: xwp = xwop  | Ha: Pwp < Pwop            | Median Test          | 0.1  | 0.05  | 2.7    | 10<br>strips | 0.0001  | X is<br>significant.<br>Hence,<br>accept Ha     |
| Damaged<br>Substrate   | PPM                | Discrete        | Process | Discrete       | With Precut<br>Without Precut             | Ho: Pwp = Pwop  | Ha: Pwp < Pwop            | 2 proportion<br>test | 0.1  | 0.05  | 0.0001 | 50<br>strips | 1.000   | X is not<br>significant.<br>Hence,<br>accept Ho |
| Test Failure<br>_Noise | Percentage         | Discrete        | Process | Discrete       | With Precut<br>Without Precut             | Ho: Pwp = Pwop  | Ha: Pwp < Pwop            | 2 proportion<br>test | 0.1  | 0.05  | 0.001  | 4281         | 0.0001  | X is<br>significant.<br>Hence,<br>accept Ha     |
| Bin 6 D/S              | Percentage         | Discrete        | Process | Discrete       | With Precut<br>Without Precut             | Ho: Pwp = Pwop  | Ha: Pwp < Pwop            | 2 proportion<br>test | 0.1  | 0.05  | 0.006  | 713          | 0.4319  | X is not<br>significant.<br>Hence,<br>accept Ho |
| Handler Error          | # of<br>occurrence | Discrete        | Process | Discrete       | With Precut<br>Without Precut             | Ho: Pwp = Pwop  | Ha: Pwp < Pwop            | 2 proportion<br>test | 0.1  | 0.05  | 0.05   | 85<br>strips | 0.0294  | X is<br>significant.<br>Hence,<br>accept Ho     |

Based on the validation result only Strip Warpage and Test Failure (noise) is significant from the change with P value of 0.0001 which affected by the removal of pre-cut process.

Next action is to determine the nature of problem at Test process.

#### Table 3 : Potential Problem Analysis

| devices<br>Updated By: Christopher Dela                                                    | Cruz                                                                                                                                                                                                                                                  | PCMS/MR8# P1C7-FW2-xxxxx-xxxx<br>Date: November 2019                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                                                                                                                        |                                           |  |  |  |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| Process/Potential Problem                                                                  | Cause                                                                                                                                                                                                                                                 | Control Measures In Place                                                                                                                                                                                                                                                                                                                                                 | Risk Factor                                                                                                                                                                                                                         | Further Control<br>Measures/Actions                                                                                                    |                                           |  |  |  |  |
| llish Strie Warnage                                                                        | No Proved & Country tops                                                                                                                                                                                                                              | Installed jig at handler conveyor to cater<br>strip with high warpage during<br>offloading of strips to magazine. Can<br>cater up to 4mm Strip warpage.                                                                                                                                                                                                                   | Red                                                                                                                                                                                                                                 | Visual inspection of strips prior<br>loading to Hatina handler to check                                                                | Eric Espino / Chris Del                   |  |  |  |  |
| nigh solp marpage                                                                          | no meta a cominy tape                                                                                                                                                                                                                                 | Modification of Test Nest Tool clamping<br>height.<br>Able to cater 4mm strip warpage.                                                                                                                                                                                                                                                                                    | Hed                                                                                                                                                                                                                                 | for strips with high warpage.<br>Measure warpage as needed.                                                                            | Target : ww-46'19                         |  |  |  |  |
| Damaged Substrate                                                                          | High Strip Warpage / Nest<br>tool clamper unable to<br>cater high warpage                                                                                                                                                                             | Modification of Test Nest Tool clamping<br>height.<br>Able to cater 4mm strip warpage.                                                                                                                                                                                                                                                                                    | Hed                                                                                                                                                                                                                                 | Visual inspection of strips prior<br>loading to Halina handler to check<br>for strips with high warpage.<br>Measure warpage as needed. | Eric Espino<br>Target : ww46'19           |  |  |  |  |
| Test Failure (Noise & O/S)                                                                 | Strip Hold stability on Nest<br>tool                                                                                                                                                                                                                  | Modification of Test Nest Tool clamping<br>height.<br>Able to cater 4mm strip warpage.                                                                                                                                                                                                                                                                                    | Hed                                                                                                                                                                                                                                 | Visual inspection of strips prior<br>loading to Hatina handler to check<br>for strips with high warpage.<br>Measure warpage as needed. | Eric Espino / Test PE<br>Target : ww46'19 |  |  |  |  |
| fest Handler Error                                                                         | High Strip Warpage                                                                                                                                                                                                                                    | Installed jig at handler conveyor to cater<br>strip with high warpage during<br>officiating of strips to magazine. Can<br>cater up to 4mm Strip warpage.                                                                                                                                                                                                                  | Hed                                                                                                                                                                                                                                 | Visual inspection of strips prior<br>loading to Hatina handler to check<br>for strips with high warpage.<br>Measure warpage as needed. | Test Operator / PE<br>Target : ww4219     |  |  |  |  |
| effinition<br>votential Problem<br>Suuse<br>Sontrol Measures Already in Plac<br>tisk Level | Anything on the change that<br>State in what manner can the<br>order of the state of the state of the<br>state of the state of the state of the<br>HEGH on known serious interaction<br>MEDICUM - no serious situation of<br>NECEL CALLE - any remain | It has the potential to cause harm on fin<br>the change influence the potential pro-<br>thas reduced the change of occurrent<br>at shadnen exists supported by data, no k<br>scie, not encugh data to evaluate risk less<br>ton exists, science data avariable to suppo-<br>ixists, all data avitale, high confidence of<br>ing risk non-issue, all data is avaitable all | al product, equipment and pro-<br>blem.<br>co of problem<br>nown or viable solution<br>of fix not yet available, outcom<br>fix, wait mode for further risk a<br>achieving negligible risk situat<br>tuble is headthy, process in co | cessing flow.<br>e cannot be predicted<br>assessment, outcome not predictable<br>on, outcome predictable<br>whol and stable.           |                                           |  |  |  |  |
| Further Control Measures                                                                   | What more can you manned                                                                                                                                                                                                                              | no further risk evaluation is necessary<br>wabby do to reduce the likelihood of the pr                                                                                                                                                                                                                                                                                    | oblem from baonening                                                                                                                                                                                                                |                                                                                                                                        |                                           |  |  |  |  |

Four risks were identified where control measures were reviewed and implemented.

Corrective Action on Noise Test Failure and Strip Warpage was the modification of nest tool holding the strip which has direct impact on testing and to cater 3mm strip warpage. This improvement project was presented in the 2023 ANTS Symposium. This resulted in reducing Test Noise Failure and improving clamping capability from 1mm to 3mm.

#### Table 4: Quality Risk Assessment – Result

| #<br>1  <br>2  H<br>3 <sup>C</sup><br>4 | Risks identified<br>High Test Rejects<br>High Strip Warpage<br>Crumpled/Damaged<br>Strip<br>Handler Error | Potential risk resulting from<br>Strip planarity on nest tool<br>No Precut and Coverlay<br>Nest Tool Clamper unable to<br>clamp high warpage on strip | Prob.<br>6<br>6<br>3                                                       | Impact<br>3<br>3            | Class<br>B<br>B | Considered Action<br>Run 1 good strip to check for<br>SBL Limit and QA Test Yield<br>Measure and compare<br>warpage reading of Control<br>and evaluated strip | Who<br>Chris<br>Chris | When<br>WW1948<br>WW1948 | Status<br>DONE<br>DONE | Prob.<br>1 | Impact<br>3 | Class<br>C |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------|------------------------|------------|-------------|------------|
| 1 1<br>2 H<br>3 C                       | High Test Rejects<br>High Strip Warpage<br>Crumpled/Damaged<br>Strip<br>Handler Error                     | Strip planarity on nest tool<br>No Precut and Coverlay<br>Nest Tool Clamper unable to<br>clamp high warpage on strip                                  | 6<br>6<br>3                                                                | 3<br>3                      | Class<br>B<br>B | Run 1 good strip to check for<br>SBL Limit and QA Test Yield<br>Measure and compare<br>warpage reading of Control<br>and evaluated strip                      | Chris                 | WW1948<br>WW1948         | DONE                   | Prob.<br>1 | 3           | Class      |
| 1  <br>2 H<br>3 C<br>4                  | High Test Rejects<br>High Strip Warpage<br>Crumpled/Damaged<br>Strip<br>Handler Error                     | Strip planarity on nest tool<br>No Precut and Coverlay<br>Rest Tool Clamper unable to<br>clamp high warpage on strip                                  | 6<br>6<br>3                                                                | 3                           | 8               | Run 1 good strip to check for<br>SBL Limit and QA Test Yield<br>Measure and compare<br>warpage reading of Control<br>and evaluated strip                      | Chris<br>Chris        | WW1948<br>WW1948         | DONE                   | 1          | 3           | с          |
| 2 H                                     | High Strip Warpage<br>Crumpled/Damaged<br>Strip<br>Handler Error                                          | No Precut and Coverlay<br>Nest Tool Clamper unable to<br>clamp high warpage on strip                                                                  | 6                                                                          | 3                           | в               | Measure and compare<br>warpage reading of Control<br>and evaluated strip                                                                                      | Chris                 | WW1948                   | DONE                   | 1          |             |            |
| 3 C                                     | Crumpled/Damaged<br>Strip<br>Handler Error                                                                | Nest Tool Clamper unable to<br>clamp high warpage on strip                                                                                            | з                                                                          |                             |                 |                                                                                                                                                               |                       |                          |                        |            | <b>`</b>    | c          |
| 4                                       | Handler Error                                                                                             |                                                                                                                                                       |                                                                            | · ·                         | в               | Run 10 good strips to check<br>for process performance                                                                                                        | Chris                 | WW1948                   | DONE                   | 1          | 3           | с          |
| · · ·                                   |                                                                                                           | High Strip warpage                                                                                                                                    | 6                                                                          | з                           | 8               | Runs 1x lot to check for<br>process performance                                                                                                               | Chris                 | WW1948                   | DONE                   | 1          | з           | с          |
|                                         | Maximum                                                                                                   | of [ Prob. X Impact]                                                                                                                                  | 1                                                                          | 8                           | в               |                                                                                                                                                               |                       |                          |                        |            | 3           |            |
| DMS re<br>Curren                        | LIST (<br>eference of Current Fi<br>nt Class (if existing)                                                | OF IMPACTED FMEA (If any):<br>IEA                                                                                                                     |                                                                            | Title:<br>NA<br>B           |                 |                                                                                                                                                               |                       |                          |                        |            | Refe        | rence      |
| Legend                                  | d:                                                                                                        | ange                                                                                                                                                  |                                                                            |                             |                 |                                                                                                                                                               |                       |                          |                        |            |             |            |
|                                         | Probability:<br>None<br>Lov<br>Possible<br>Probable<br>More probable<br>Bure                              | 0<br>1<br>3<br>6<br>9<br>10                                                                                                                           | Impact:<br>None<br>Low<br>Notable<br>Seruitive<br>High isk<br>Catastrophic | 0<br>1<br>3<br>6<br>9<br>10 |                 | Class:<br>hacceptable A<br>Major B<br>Minor C                                                                                                                 | RIPACT 9              | в                        |                        |            |             |            |
| Note:<br>1-                             | Annual state and some Weather                                                                             | s A/R should be taken relevant eff                                                                                                                    | ective action                                                              | is to decreas               |                 |                                                                                                                                                               | 0                     | <u>n</u> nn              |                        |            |             |            |

After the actions were done, the impact for the risk assessment decreased from 18 to 3 or from major to minor class.

#### 4.0 RESULTS AND DISCUSSION

After removal of Pre-cut process, below are the results and impact of this project which leads to Cost savings and Cycle time reduction as shown in Graph 7 and 8 respectively.





After the project implementation, no more cost incurred from pre-cut blade from Feb'2020 to date. This Project leads to cost savings of USD 100.23K from Feb.2020 to Jan.2021 alone.

Cycle time reduction for MEMS Instrip devices reduces from 7 days to 6 days.





Graph 7: MEMS Instrip Cycle Time ( Before and After)

Zero rework on detached coverlay after Pre-cut process elimination that resulted in removal of Non-Value Adding Activity.



#### **5.0 CONCLUSION**

With the use of data analysis tools, proper risk assessment and management during this project, Pre-cut process elimination was made possible and implemented without compromising quality and productivity.

#### **6.0 RECOMMENDATIONS**

It is recommended to fan-out this improvement on upcoming device variant originally requiring pre-cut process which was already fanned-out to other device variants.

#### 7.0 ACKNOWLEDGMENT

The authors would like to acknowledge the following: Assembly Process Engineering and Production team, Test Product Engineers for the technical guidance and feasibility study.

#### **8.0 REFERENCES**

- 1. Equipment and Process FMEA
- 2. FW2 Process Plan
- 3. Assembly IDM Cost
- 4. ST Calamba Tope Page

### 9.0 ABOUT THE AUTHORS



Eric G. Espino is a Senior Process Test and Finish Engineer in Test Product Engineering. BS Electronics and Communications Engineering from the Computronix College Dagupan. Certified Six-Sigma Green Belt practitioner currently employed at STMicroelectronics, Inc. with 24 years in Semiconductor Industry.



Christopher L. Dela Cruz is a Sr. Process Engineer in the End of Line Process. Graduate of Electromechanical Technology and BS in Mechanical Engineering. He acquired his Semiconductor knowledge here and abroad with 25 years of experience. He is a certified Six-Sigma Green Belt practitioner and currently a Sr. Process Engineer support for Package Sawing and Sorting at ST Malta site.



Sotero Malabanan is a Sr Technician Specialist in the End of Line. BS Electrical Engineering from Alejandro Colleges, Quezon City. He acquired his Semiconductor knowledge at STMicroelectronics for 19.4 years. He is a certified Six-Sigma Green Belt practitioner and currently a Process Engineer Support for Singulation and VMI process.