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ABSTRACT 

 

This paper proposes a novel method for image classification 

with applications in Personal Protective Equipment (PPE) 

detection. The method uses the ResNet50 architecture, a 

prominent Convolutional Neural Network for precise image 

detection and categorization. The method boasts a complex 

structure comprising 50 layers and has demonstrated 

exceptional proficiency across various computer vision tasks. 

The paper also discusses advanced image preprocessing 

techniques, such as data normalization, image resizing, and 

data augmentation, to enhance the model’s feature extraction 

and batch processing abilities. 

 

The paper trains the model on a diverse spectrum of PPE 

items, from face shields and aprons to masks, gloves, and 

sleeves. This is a prerequisite before operating high-

temperature equipment like bake ovens. 

 

Following an extensive model training spanning a designated 

number of epochs, the model exhibited a remarkable 

achievement: attaining a validation accuracy of 99.6%. 

Interestingly, the model excelled in distinguishing between 

appropriate and improper utilization of Personal Protective 

Equipment, demonstrating the project's pioneering effort with 

implications for other future applications.  

 

 

1. 0 INTRODUCTION 

 

In the field of computer vision, images come in various sizes, 

colors, and shapes, displaying diverse visual characteristics. 

Detecting and classifying operators wearing Personal 

Protective Equipment correctly is crucial for safety and 

accident prevention due to exposure to extreme temperatures. 

At Probe bake ovens, the current PPE detection approach 

heavily relies on reading QR (Quick Response) codes 

attached to items like gloves, sleeves, aprons, and face shields 

with the exception of face mask detection that is performed 

using a machine learning model trained through transfer 

learning, which utilizes pre-trained weights from large-scale 

datasets like ImageNet. The main drawback of the current 

implementation is the relatively slow detection speed since 

PPE items are detected one by one (Figure 1). In addition, QR 

codes have to be re-attached in case the PPE needs to be 

replenished. 

 

In order to address this challenge, the team proposes an 

alternative method that leverages Convolutional Neural 

Networks (CNNs), specifically ResNets, to detect all PPE 

simultaneously (one-shot detection). QR code detection 

combined with transfer learning and the CNN-based 

approach each have their own strengths and limitations. The 

conventional QR code approach involves scanning the code 

directly, while face mask transfer learning significantly 

reduces training time by leveraging pre-trained models that 

have learned generic features from large-scale datasets. On 

the other hand, CNNs require a substantial volume of labeled 

images for effective model training. While CNNs offer a 

promising solution for automated PPE detection, they pose 

challenges such as the labor-intensive task of building and 

annotating a diverse dataset with representative samples and 

ensuring a balanced sample distribution. Additionally, 

training deep CNN architectures like ResNets can be 

computationally demanding and require substantial 

computational resources. 

 

 
 

Figure 1. Old Method of PPE Detection. The photos show sequential PPE 

detection using QR Codes for face shields, aprons, gloves, and sleeves. 

 

The aim of this study is to explore the implementation of 

ResNet50 in image classification tasks, incorporating various 

image processing techniques. In doing so, it has the potential 

to pave the way for other applications in manufacturing 

settings, such as defect detection and motion analysis. Figure 

2 shows a diagram of the typical implementation of 

ResNet50. 
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Figure 2. ResNet50 Architecture. This is an example of ResNet50 
architecture with a 3-channel image input layer [1]. 

 

 

2. 0 REVIEW OF RELATED WORK 

 

An algorithm named YOLO (You Only Look Once) is 

another known object detection model introduced in 2016 by 

Joseph Redmon et al. It works as an end-to-end neural 

network that makes predictions of bounding boxes and class 

probabilities all at once. The YOLO model takes an image as 

input and then uses a deep convolutional neural network to 

detect objects in the image. Its architecture consists of 

convolution layers pre-trained using ImageNet and converted 

to perform detection with the final fully connected layer 

predicting both class probabilities and bounding box 

coordinates [2]. 

 

A study on Personal Protective Equipment Detection with 

Camera with Live Camera conducted by Bhing and Sebastian 

[3], used a YOLO object detection model with a Roboflow 

computer vision developer framework and TensorFlow 

platform to detect PPE for COVID-19 by using a dataset 

consisting of collected images from online datasets and their 

own captured images. Their results showed that they were 

able to detect PPE such as face masks, face shields, and 

gloves from a real-time webcam feed and in uploaded videos. 

 

Another study conducted by Karlsson and Strand [4], created 

another model with the use of a YOLO model to detect PPE 

with the following items used often by industry workers: 

Hardhat, Safety vest, Safety gloves, Safety glasses, and 

hearing protection. While their results in PPE detection show 

near-perfect accuracy within a range of three to five meters, 

the hardware used was limited with a 12-megapixel cellphone 

camera used for image capturing and the model was run 

without a GPU, which would make the processing power 

faster to produce the results. 

 

A project [5] made by Balakreshnan et al. demonstrated the 

application of Artificial Intelligence (AI) and machine vision 

to identify PPE. A low-power 8-megapixel camera with 

Linux OS utility with a low-power graphics processor was 

used as hardware. Microsoft Azure Custom Vision AI and 

Intelligent AI Services, in conjunction with low-cost vision 

devices with lightweight onboard AI capability, were used as 

a platform for a deep learning neural network model using 

publicly available images. The results showed poor 

performance at first but was vastly improved by collecting 

images specifically from a laboratory environment, where the 

PPE detection model is expected to be used. The affordability 

and flexibility of the system showed multiple benefits such as 

improved safety and better detection and recording of safety 

violations. The hybrid AI architecture approach allowed for 

flexibility in training and deployment based on the capability 

of local computing resources. 

 

A similar paper [6] presented by Nath et al. introduced, 

tested, and evaluated three Deep Learning-based approaches 

for detecting PPE attire with one approach using a 

Convolutional Neural Network (CNN) based classifier model 

such as ResNet-50. They concluded that another approach, 

which used a version of a YOLO model, currently provided 

the most accurate detection of PPE attire. However, it was 

also added that the approach of using CNN models achieved 

higher accuracy at first, but errors generated in the latter parts 

of its simulation lowered its final accuracy score. This 

indicated that potentially better performances can be 

achieved by improving the classifiers for detecting PPE with 

higher accuracy. 

 

 

3.0 METHODOLOGY 

 

3.1 Data Collection 

 

In the image acquisition process, the team utilized the 

Microsoft LifeCam Studio USB 5 Mega Pixel 30 Frames per 

second Webcam. The camera was positioned near the Oven 

area to collect data. Supervisors were given explicit 

instructions to capture sample images of operators wearing 

PPE, both properly and improperly. Various scenarios were 

simulated, including instances where certain PPE items were 

missing, such as gloves or face shields. It was crucial to 

ensure a balanced distribution of data for both classes to 

prevent bias during the training process. It is important to 

note that the soundness of the resulting model heavily 

depends on the quality of the collected data. 

 

To facilitate data collection, the team developed a camera 

application that included bounding boxes indicating the 

specific locations where different PPE items should be 

present in the image as shown in Figure 3. This allowed for 

the creation of regions of interest for machine learning and 

provided visual references for the operators during the data 

collection process. Around 1200 images were collected (50% 

for each class which made it a balanced dataset). 
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Figure 3. Camera Implementation Set-Up. This is the camera app developed 

by the team with bounding boxes to enclose different PPE used in Oven 

Bake, making detection easier for the algorithm. 

 

3.2 Annotation 

 

The process of annotation involves the task of labeling 

images and categorizing them into separate clusters. In order 

to achieve this, the images were cropped to isolate specific 

regions of interest (ROIs). In giving emphasis to these 

relevant regions, the system can enhance its generalization 

capabilities and extract distinctive features from the localized 

areas, see Figure 4. 

 

            
 
Figure 4. Proper vs Improper PPE Attire. The photos represent images of 

properly worn PPE (L) and improperly worn PPE (R). 

 

Proper means complete PPE while improper means 

incomplete. In the example of improperly worn PPE, the 

operator is not wearing a face shield, high-temperature 

gloves, and sleeves. The image was cropped to remove 

unnecessary objects that offer no value in model training. 

 

3.3 Image Pre-processing 

 

Data Augmentation 

 

Data augmentation involves artificially increasing the 

number of samples in a dataset by applying transformations 

to existing images. In our study, we employed various data 

augmentation techniques, including random distortion, 

random rotation, random brightness, random contrast and 

random flips. The distortion technique allows for 

modifications while preserving the aspect ratio of the image. 

Rotation involves rotating the image by arbitrary degrees and 

then taking a crop from the center of the rotated image. 

Random brightness adjusts the brightness level of an image 

by adding a random value to the intensity of each pixel. 

Random contrast, on the other hand, adjusts the contrast by 

stretching or compressing the range of pixel intensities [7].  

Random flips simulate the mirror effect by reflecting the 

image along the chosen axis as shown in Figure 5. By 

applying these random or controlled transformations, we 

introduced variations that mimic real-world scenarios and 

expose the model to different patterns and variations in the 

data. After data augmentation, the number of images doubled 

(2400 images). 

 

 
 

Figure 5. Data Augmentation Sample. Examples of Data Augmentation with 

Original Image (L), Flipped Image (M) and Slightly Darkened Image (R). 

 

Image Resizing 

 

Resizing the images to fixed input sizes is advisable to ensure 

consistent data handling. This practice offers several benefits, 

including reducing the computational load on the GPU, 

optimizing memory usage, and expediting the training 

process by minimizing the number of pixels to process. 

 

Initially, the images had dimensions of approximately 400 x  

430 pixels with three color channels (BGR) after annotation. 

In order to align with the ResNet-50 architecture, which was 

pre-trained on the ImageNet dataset, the team chose to resize 

the images to 224 x 224 pixels while maintaining the three 

color channels as shown in Figure 6. It is important to note 

that the training process starts from scratch, meaning pre-

trained weights will not be utilized. 

 

Resizing the images not only allows for consistent input sizes 

but also ensures that the model operates within manageable 

memory constraints. Additionally, by reducing the image 

dimensions, computational resources are utilized more 

efficiently, resulting in faster training. Despite the resizing, 

the team ensured that the image quality remained suitable for 

the intended purpose of the study. 
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Figure 6. Implementation of Resizing Image. The image was resized from 

the original size of 405x436x3 (L) to 224x224x3 (R). 

 

Image Rescaling 

 

Apart from the image size in terms of aspect ratio, the pixel 

values themselves can also consume a substantial amount of 

memory during processing. Rescaling the pixel values by 

dividing them by 255 serves to scale them down and confine 

them within the range of 0 to 1 as displayed in Figure 7. This 

rescaling operation aids in reducing the overall image size, 

leading to an optimization of memory usage. 

 

 
Figure 7. Numerical Output of Re-Scaled Image. The left side is the original 

pixel values, while the right side, is the rescaled pixel values. 

 

3.4 Splitting of Data and Data Visualization 

 

In this study, it holds significance for the model to grasp the 

crucial features present in the images it learns from. To 

achieve this, we have divided the dataset into separate 

training and validation sets, ensuring that corresponding 

images in both sets share similarities, albeit not being 

identical. This approach aims to facilitate the model's ability 

to generalize its learned patterns and make accurate 

predictions on unseen data. If the training and validation sets 

exhibit disparate distributions or characteristics, the model's 

generalization capability may suffer, resulting in poor 

performance when applied to real-world data. Data 

visualizations play a crucial role in verifying whether the 

training and validation sets contain similar images within 

their respective groups. 

 

 

3.5 Model Training 

 

The team utilized NVIDIA's Jetson Tegra Xavier computer 

to train the data as seen in Figure 8, as conventional laptops 

and desktop computers are unable to handle large volumes of 

data, particularly images. The Jetson Tegra Xavier is a 64-bit 

ARM-based high-performance system-on-a-chip (SoC) 

designed for autonomous machines. It is equipped with GPUs 

(Graphical Processing Units) featuring 512 CUDA cores. The 

model was trained on Keras-Tensorflow deep learning 

libraries. Keras is a high-level deep learning framework for 

training and deploying NN (Neural Networks) which is built 

on top of Tensorflow. Tensorflow on the other hand is an 

open-source deep learning library developed by Google. 

    
 

Figure 8. Hardware Set-Up for Machine Learning. The photos show the 

NVIDIA Jetson Tegra Xavier that was used in the data extensive processing. 
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During the training phase, the images that were pre-processed 

and resized to dimensions of 224 x 224 x 3, with pixel values 

rescaled to the range of 0 to 1 were then fed into a 50-layer 

convolutional neural network known as ResNet50. The input 

image goes through the First stage, a convolutional layer with 

64 filters of size 7x7, followed by batch normalization and 

ReLU activation. Zero-padding and max pooling are applied 

to reduce the spatial dimensions (see Figure 9).  

 

 
 

Figure 9a. Sample Image Processing Layer: Input layer. 

 

 

 
 

Figure 9b. Sample Image Processing Layer: Zero padding. 

 

 

Figure 9c. Sample Image Processing Layer: Convolution. 

 

Convolution is a mathematical operation (dot product) used 

to extract features from an image (see Figure 10). Padding is 

done in order to preserve the size of the original image 

because the convolution process shrinks the size of the image 

(see Figure 11). Pooling on the other hand is used to reduce 

the size of the representation [8] as shown in Figure 12. 

 

Figure 10.  Example of Convolution Process. The matrix colored in green is 

the image, the matrix colored in yellow (3x3) is the filter or the weight, while 
the convolved feature colored in red is the output of the convolution process. 

 

 

 

 
 

 

Figure 11.  Sample Convolution of Padded Image. Padded image (Input) is 

convolved in 2x2 matrix (Kernel) producing the Output shown. 

 

  
 

Figure 12.  Pooling Illustration Sample. Max Pooling (L) uses the maximum 

pixel value, Average Pooling uses the averaged value of the neighboring 

pixels (R).  

 

The second stage consists of multiple blocks that introduce 

residual connections. Each block is composed of three 

convolutional layers. The first layer has a 1x1 filter to reduce 

the number of channels, the second layer applies a 3x3 filter, 

and the third layer has a 1x1 filter to increase the number of 

channels. Identity blocks (blocks with no change in spatial 

dimensions) and convolutional blocks (blocks that change 

spatial dimensions) are alternated. The output is obtained 

after several blocks. The third stage consists of multiple 

blocks with residual connections. The fourth stage further 

increases the number of filters and continues applying 

residual connections. The final stage follows a similar pattern 

but increases the number of filters to an even larger value. 

After the final stage, an average pooling layer is applied to 

reduce the spatial dimensions of the feature maps. The output 

feature maps are flattened into a 1-dimensional vector. The 

Fully Connected Layer is a dense layer with the desired 

number of output classes added to the model. The final 

activation function (e.g., softmax) converts the logits (raw 

output of a model) into class probabilities (See Appendix A 

for the visualization of other layers). The output of the model 

is the predicted class probabilities for the input image. Figure 

13 shows the layers of ResNet50 architecture. 

 

 
 

Figure 13.  ResNet50 Model Architecture.  
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Instead of performing binary classification, a multiclass 

classification approach was employed. The class labels were 

transformed into one-hot encoded vectors, and the softmax 

activation function was used in the output layer. This 

activation function calculates the probabilities for each class, 

enabling confident predictions across multiple classes. 

 

The optimization algorithm chosen for training was Adam, 

known for its effectiveness in optimizing deep learning 

models. The loss function employed was binary cross-

entropy, which is well-suited for multiclass classification 

tasks. To control the weight adjustments during training, a 

learning rate function was utilized, with different learning 

rates such as 0.1, 0.01, and 0.001. 

 

The batch size, which determines the number of samples 

processed in each training iteration, was optimized as well. 

Furthermore, early stopping was implemented, allowing the 

training process to halt early if the validation performance did 

not improve after several defined epochs. In such cases, the 

weights of the best-performing model will be restored. 

 

The model was trained for 32 epochs, where each epoch 

involved processing all the training examples, calculating the 

loss, and updating the model's weights and biases based on 

the chosen optimization algorithm. Take note that because 

early stopping is implemented 32 epochs may not be reached 

especially if the accuracy plateaued and reached the threshold 

patience (number of epochs where accuracy is on plateau). 

Figure 14 offers a brief insight with regard to the processes 

inside a CNN. 

 

 
Figure 14. Convolutional Neural Network Workflow. The initial image is 

subjected to multiple filtering operations to detect different features. 

Advanced filters then analyze these feature maps, repeating the process for 

the selected convolutions. The resulting values are then inputted into a Deep 

Neural Network (DNN) to facilitate learning and prediction. To convert the 

DNN's output, which starts as random integers, into probabilities, the 
softmax function is applied [4]. 

 

 

 

 

 

 

4.0 RESULTS AND DISCUSSION 

 

4.1 Accuracy of Model Training 

 

Initial training already yielded 91% as shown in Figure 15 

using the original images and by incorporating additional 

images through data augmentation techniques, the accuracy 

of the model training has experienced a significant 

improvement as seen in Figure 16. The data augmentation 

technique involves generating more samples and introducing 

diversity into the dataset, enabling the algorithm to develop a 

broader understanding and generalize better on previously 

unseen data.  

 

 
Figure 15. Initial Result. Validation set accuracy at 91% (32 epochs) without 
data augmentation. Slight overfitting was observed since validation and 

training accuracy has a slight difference. 

 

 
Figure 16. Final Result with Data Augmentation. Data augmentation was 

implemented which doubled the amount of training data. The validation and 
training accuracy started to converge on 7 epochs and plateaued until epoch 

18. Validation set accuracy at 99.6% which is excellent. 

 

4.2 Model Testing and Prediction Result 

 

Upon the completion of model training, the team continued 

to gather an additional set of images from Mechanical Finish, 

containing both proper and improper wearing of Personal 

Protective Equipment (PPE). The model exhibited highly 

accurate predictions in all 45 images depicting improper 

wearing of PPE since all were classified correctly. However, 

out of the 112 images showing proper wearing of PPE, there 

was a single misclassification with one image incorrectly 

labeled as improper wearing of PPE. This is acceptable 
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because the image in question is also ambiguous in nature as 

shown in Figure 18. It is seen that the operator wearing the 

PPE properly was not correctly positioned as required by the 

bounding boxes within the screen. Overall, the model’s 

performance is highly acceptable with 98.73% accuracy, 0% 

miss rate, and 0.8% false alarm.  

 

 
 
Figure 17. Mislabeled Image. The image was originally labeled as “Proper” 
but since the face tilted sideways, it did not detect the face shield and face 

mask properly classifying it as “Improper”. 

  

 

5.0 CONCLUSION 

 

Based on the findings of the case study that employed the 

ResNet50 convolutional network for image classification of 

Personal Protective Equipment (PPE) adherence, the results 

show a remarkable accuracy of 99.6%, a miss-rate of 0%, and 

a false alarm rate of only 0.8%. These results strongly 

indicate that utilizing the ResNet50 architecture is a highly 

effective approach for this particular task. Moreover, there is 

potential for its application in various other image 

classification tasks, provided that there is a substantial 

volume of images for robust training and feature learning. 

 

 It is worth emphasizing the crucial role played by factors 

such as data quality, data balance, and the abundance of 

images in ensuring the development of a high-quality model. 

These factors significantly contribute to the overall success 

and reliability of the ResNet50 convolutional network in 

accurately classifying PPE adherence based on image 

analysis. 

 

 

6.0 RECOMMENDATIONS 

 

Investing in high-performance hardware for model training is 

highly recommended. While the NVIDIA Jetson Tegra 

Xavier offers a decent GPU, it may not provide sufficient 

storage capacity (only 32 GB) for housing a large volume of 

images required for deep learning. Therefore, it is advisable 

to ensure ample storage capacity to accommodate the data. 

Additionally, camera selection should also be considered. In 

a previous implementation, a low-resolution camera was used 

(Raspberry Pi) which yielded low-quality images. Image 

quality played a huge part in obtaining a good model for this 

study. 

Furthermore, it is essential to not limit the training data to 

what is currently available. There should be a continuous 

effort to collect new data to regularly update the model. By 

incorporating new data, the model can be improved and will 

perform better on unseen data, enhancing its overall 

effectiveness. 

 

Additionally, it is worth considering other image-processing 

techniques that were not employed in the experiment. There 

are numerous techniques available that can supplement or 

complement machine learning approaches in terms of feature 

extraction. Exploring these alternative techniques can 

potentially enhance the performance and capabilities of the 

model. 

 

 

7.0 ACKNOWLEDGMENT 

 

We would like to extend our heartfelt appreciation to Sir Peter 

Gonzales, Myra Enriquez, and Xavier Tacla from Mechanical 

Finish for their invaluable contribution to the data necessary 

for the successful completion of this study. We would also 

like to express our gratitude to the Operators and Supervisors 

of MF for their unwavering support and cooperation, which 

played a pivotal role in the data collection process. Lastly, we 

extend our deepest thanks to the management for their 

unwavering support of the project and their allocation of 

adequate budgetary resources, without which this Machine 

Learning endeavor would not have been possible. 

 

 

8.0 REFERENCES 

 
[1] Eri Matsuyama, A Deep Learning Interpretable Model for 

Novel Coronavirus Disease (COVID-19) Screening with Chest 

CT Images 

[2] YOLO Algorithm for Object Detection Explained [+Examples] 

(v7labs.com) 

[3] A. A. Protik, A. H. Rafi and S. Siddique, "Real-time Personal 

Protective Equipment (PPE) Detection Using YOLOv4 and 

TensorFlow," 2021 IEEE Region 10 Symposium (TENSYMP), 

Jeju, Korea, Republic of, 2021, pp. 1-6, doi: 

10.1109/TENSYMP52854.2021.9550808. 

[4] Jonathan Karlsson & Fredrik Strand, Visual Detection of 

Personal Protective Equipment & Safety Gear on Industry 

Workers 

[5] PPE Compliance Detection using Artificial Intelligence in 

Learning Factories – ScienceDirect 

[6] Deep learning for site safety: Real-time detection of personal 

protective equipment - ScienceDirect 

[7] https://augmentor.readthedocs.io/en/stable/userguide/mainfeat

ures.html 

[8] https://medium.com/analytics-vidhya/convolution-padding-

stride-and-pooling-in-cnn-13dc1f3ada26 

 

 

 



32nd ASEMEP National Technical Symposium 
 
 

 8 

 

9.0 ABOUT THE AUTHORS 
 

Michael C. Trinidad completed his 

Bachelor of Science degree in Electronics 

and Communications Engineering from 

Technological University of the Philippines 

– Taguig in 2005. He passed the ECE licensure exam in the 

same year. Currently, he serves as a staff manufacturing 

engineer at onsemi Carmona Philippines with a primary focus 

on applying Data Analytics and Machine Learning 

techniques in the field of semiconductor manufacturing. 

 

Diego Jose L. Cabalza completed his 

Bachelor of Science degree in Electronics 

and Communications Engineering from the 

University of the Philippines – Diliman in 

2022. Currently, he serves as a 

manufacturing engineer at onsemi Carmona, focusing on 

projects related to Data Analytics and Machine Learning. 

 

 

Rommel M. Fajardo completed his degree 

in electronics engineering from First Asia 

Institute of Technology and Humanities in 

2015. He went on to successfully pass the 

ECE licensure exam in October of the same 

year. Currently, he holds the position of an Automation 

Engineer at onsemi Carmona where his primary role entails 

working on projects related to Data Analytics and Machine 

Learning. 

 

 

 

 

10.0 APPENDIX 
 

APPENDIX A 

 

 
 
 

 

 

 


