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ABSTRACT 

 

Achieving zero chemistry maintenance plays a competitive 

advantage to any industry including semiconductor 

manufacturing. Establishing critical controls thru novel tools 

and automation is the key towards lean and lights-out 

manufacturing. 

 

The build-up of organics contaminants inherent to process 

limits chemistry efficiency and life. One known method of 

tracing organics in water industry is total organic carbon 

analysis or TOC. This method is limited to low conductive 

chemistry (<1 mS/cm2) from which application is not feasible 

to majority of semiconductor chemistries (>2k mS/cm2). This 

study developed a novel tool that enabled quantification of 

organics thru UV oxidation to form carbonic acid OC(OH)2 

detectable thru conductive sensors. Powered by Gaussian 

Mixture Clustering for chemistry type profiling and Markov 

Modelling for organics speciation, the first to Industry 

analyzer standardizes chemistry life to organic carbon 

concentration (σ2≤50 ppm) with 99.98% organics real-time 

traceability. Based on the extrapolated datasets and chemistry 

dynamics, the concentration limits per conditions, parameter 

variations and internal states were predicted via ensembles of 

decision tree (EoDT) which unveils analyzer’s universal use. 

Chemistry life in terms of organics concentration was 

prognosed using actual lab standard addition method 

producing 99.98% success rate from predicted value. From 

there, the universal analyzer was linked to automatic bleed 

and feed system to maintain desired concentration limit 

enabling zero chemistry maintenance – a new frontier in 

chemistry application relevant to fab, bump and assembly 

semiconductor manufacturing. 

 

 

1. 0 INTRODUCTION 

 

Reduction of raw materials cost has been a constant challenge 

in any Manufacturing Industry. Seen on Figure 1, chemicals 

belong to top material cost from which Texas Instruments has 

always been dependent to third party manufacturers making 

our chemical spending almost uncontrollable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multiple cost-reduction efforts have been launched to 

aggressively reduce cost of chemical consumptions in all Fab, 

Bump and Assembly sites highlighting one-of-a-kind 

innovations and thru sharing best known practices. One 

common solution is extension of chemical floor life defined 

in terms of total product count, parameter count, or time-

based life. All of these monitoring is part of chemical 

maintenance to ensure integrity of process and product during 

manufacturing. 

 

1.1 Chemistry  Maintenance 

 

Based on annual chemical consumption chemical or bath 

maintenance occupies 20-30% of total chemical spending. 

This large percentage of chemical cost is directly being 

dumped to waste treatment facilities once defined floor or 

production life was reached. 

During bath maintenance, tool is being placed down state 

which contributes to 5-15% tool availability affecting tool 

throughput.  

 

1.1.1  Chemistry Life Definition 

 

Bath life or chemical floor life of was pre-defined by 

chemical supplier which is dependent of material or 

chemistry type (acid, solvent etc.) or process capabilities 

(yield, removal rate etc.). Table 1 summarizes Texas 

Instruments known chemistry with their defined life. Low 

bath life value indicates high bath maintenance occurrence 

and high chemical cost. 
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Table 1: Texas Instruments -Fab, Bump & Assembly 

Chemistry in their defined bath life 
PROCESS CHEMISTRY BATH LIFE COUNT 

FAB & BUMP  Plating 1 
Parameter 

(Amp◦min) 

A 

Plating 2 B 

Plating 3 C 

Plating 4 Time D 

Stripping 1 Count E 

Stripping 2 Count F 

Flux 1 Time G 

ASSEMBLY Deflash Time H 

Rewash Time I 

Etch Time J 

Plating 5 Parameter 

(Amp◦dep) 

K 

Chemistry life based on product or parameter count such as 

Stripping 1 and Stripping 2 chemistry (wafer count) and 

assembly Plating 5  total current • deposition time ( Amp.dep) 

were based on the maximum saturation point of base 

chemistry due to buildup of impurities from continues 

loading of products.  

 

Chemistry life based on production floor time and staging 

such as assembly deflash chemistry and rewash chemicals 

(months) are due to chemistry degradation upon continues 

exposure to extreme manufacturing conditions such as 

heating and chemistry side-reactions. 

 

Any ageing chemistry or bath are known to have lower 

process efficiency affecting product quality hence must be 

controlled and monitored during bath life extension. 

 

1.1.2 Risk of Ageing Bath 

 

Known risk of extending bath life are quality issues relating 

to low chemistry and process efficiency. Based on compile 

Failure mode and effect analysis (FMEA), more than 100 

documented fail modes across areas directly pointing to 

ageing chemistry as potential root cause of failure. This 

includes critical customer issues such as voiding generation 

from ageing wafer plating bath, non-wets due to non-uniform 

plate relating to ageing plating bath and die crack from lead 

frame non-plate issue relating to ageing etch chemical life as 

shown in Figure 2. 

 

 

 

 

 

 

 

 

Bath life controls established for all chemistry thru tool set-

up and automation watchdogs. For any spike of quality issues 

nearing bath life, one known action is to further tighten bath 

maintenance and frequency resulting to additional chemical 

cost. 

One example is for Plating 4 bath. Initial bath life was 

defined for (D x 2) months. When tall post technologies 

ramped in 2018, plate coplanarity defects and uneven metals 

were observed at earlier months with no assignable issue. 

Bath life was reduced to D months as part of corrective action 

increasing maintenance cost by 150%. 

 

1.2 The Culprit 

 

Controlling build-up of organic materials in different 

chemistries and process has been a constant challenge in 

semiconductor industry. J. Bahena, 2022 and  J. Daviot, 2018 

marked organic leaching as main source of efficiency 

degradation and severe product yield loss from ageing 

stripping bath in wafer and units scale. 

 

 

 

 

The presence of large organic molecules impedes the 

mobility of ions or any active chemical agent in chemistry. It 

lowers down the overall reactivity by adsorbing the Bond 

dissociation enthalpies (BDE) of nearby atoms or molecules. 

Aside from change in chemical property, physical property 

such as color, pH, specific gravity also signifies presence of 

organic material saturation.  

 

Current indirect method of defining bath life is through 

monitoring of significant change in physical properties of 

different chemistries. Figure 4 shows changes of solution 

color and pH signifying photoresist (organic) build-up 

overtime. 

 

 

Laboratory scale analysis and in-line analyzer in chemistry 

physical characterization has been established as part of new 

chemistry analysis frontier since 2010. What is left to be 

explored are accurate detection and quantification of organic 

Figure 2:  
Customer Issue- die crack due to voiding processed in aged bath  

Figure 3:  
Optical images of coupon surfaces post bath age studies 

displays representative images for A) 0-7 days and B) 7-15 day 

tests. C) Contact angle measurements results. [1] 
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Figure 4:  
Stripping chemistry color, pH and viscosity changes over time 
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material build-up up for unique semiconductor chemistries 

correlating to efficiency in a given bath life.  

 

1.2 Total Organic Carbon (TOC) Analysis 

 

TOC is a well-known method in Wet industry that quantifies 

the amounts of organics directly from a sample. TOC 

analyzers convert organic carbon into Carbon dioxide (CO2) 

and water (H2O) by means of high temperature catalytic 

combustion or chemical oxidation.  

 

TOC is usually paired with conductivity sensors which 

detects oxidized organic carbon traces. The difference 

between conductivity values of before and after oxidation is 

use to quantify organic carbon in sample.  

 

Table 2: Comparison of known Organic compound analyzers 

 
Method Mechanism Pros Cons 

High 

Temperature 

Combustion 

Mix sample 

under oxidation 
catalyst under 

heated chamber 

Rapid, 

efficient and 
compatible to 

wide range of 

organics 

Metal salts and 

acid quickly 
damages 

combustion 

tube 
Non-Dispersive 

Infrared 

Spectroscopy 

Organic 

compounds 

absorb infrared 
radiation at 

specific 

wavelengths 

Non-

destructive 

Sensitivity to 

interference 

from other 
gases or 

compounds  

Nuclear 

Magnetic 

Resonance 

(NMR) 

Provides 

molecular count 

absorption of 
through 

electromagnetic 

radiation 

Characterizes 

chemical 

structure  

Expensive and 

indirect 

concentration 
determination  

High 

Performance 

Liquid 

Chromatography 

Separate, 

identify and 

quantify each 
component in 

the sample  

High 

sensitivity 

with high 
speed 

Sample easily 

clogs on 

column, 
tedious sample 

preparation 

Total Organic 

Carbon Analysis 

(TOC) 

Directly analyze 
amount of 

organic carbon 

in sample 

High speed 
analysis 

Limitation to 
Low 

conductive 

chemicals 

 

Table 2 highlights advantages and disadvantages of TOC 

compared to other known analyzers in industry from which 

TOC is only applicable to samples with conductivity 

measurement below 1000 mS/cm2 usually applicable for 

ground water analysis (150 mS/cm2.) Implementing TOC for 

semiconductor chemistry is a big challenge knowing that 

most chemistry are electrolytic, polar and highly conductive. 

 

Multiple academic studies make use of advanced analytical 

tools to back-up and revamp TOC analyzers in wider range 

of industry applications including Nuclear Magnetic 

Resonance (NMR) or Furrier transform Infrared 

Spectroscopy (FTIR) but these methods are not favored in 

terms of manufacturing cost and limit of quantification. 

1.2.1 UV Oxidation 

 

The first use of UV in oxidizing organic material was 

introduced by Brownrigg in 1757. Since then, UV has been 

used to change both physical and chemical property of 

organic materials and is widely use in polymer industry. 

Some of its applications are also use in Wafer fab and bump 

during photolithography where property of photochemically 

amplified resist changed as the organic material is exposed to 

UV light making it soluble to a compatible solvent of almost 

similar polarity. 

Equation 1: 

 𝑅 − 𝐶 − 𝑂 − 𝐻(𝑜𝑟𝑔𝑎𝑛𝑖𝑐) + 𝑈𝑉 → 𝐶𝑂2(𝑔) + 𝐻2𝑂(𝑙) + 𝑅𝑠𝑎𝑙𝑡  

Another application of UV is through material combustion. 

One common structure of organic materials is presence of 

conjugated Carbon (sp3, sp2, sp). The covalent bonds between 

carbon and hydrogen in hydrocarbon structure (C-H) and the 

localized oxygen bond in carboxylic structures (C-O) when 

exposed in continuous UV is converted to Carbon dioxide, 

water and salt as by-product as shown in equation 1. At 

equilibrium, the amount of CO2 corresponds to amount of 

organic carbon at start. The challenge comes with defining 

oxidation value of organic carbon through spectrometer 

absorbance peak and stability of CO2 detection which is 

dependent to chemistry nature and properties 

 

This paper makes use of chemistry profiling with Gaussian 

mixture modeling to softly predict and categorize multiple 

semiconductor chemistry nature, properties and reactivity. 

 

1.2.1.a Gaussian Mixture Model (Unsupervised Learning) 

 

Gaussian mixture model is a machine learning method used 

to determine the probability of each data point belongs to a 

given cluster (k). This study makes use of 3 component- 

Gaussian mixtures to categorized semiconductor chemistries 

organics as shown in Figure 5 

 

 

 

The mixing coefficients are probabilities per se and must 

meet  ∑ 𝜋𝑘 = 1𝐾
𝑘=1  condition to optimally categorize 

chemistry class and isolate oxidized organics forms. 

 

 

Figure 5:  
Gaussian model made of 3 clusters (k) on defined distribution (σ) 

and mean probability (π) 
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1.2.2 Carbonic acid 

 

Carbonic acid is a compound which has a chemical formula 

of H2CO3. This is formed from organic compounds that are 

reacted or exposed to any oxidizing agents or materials such 

as UV light, resulting to Carbon-Hydrogen bond of a 

compound being replaced by Carbon-X bonds where X = any 

electronegative element such as Oxygen and rapidly becomes 

CO2 in H2O due to its instability under ambient conditions.  

This compound is also considered as weak dibasic due to that 

it contains very low H+ concentration compared to 

undissociated 

Equation 2: (1st dissociation) 

𝐻2𝐶𝑂3(𝑎𝑞) + 𝐻2𝑂(𝑙) ↔ 𝐻𝐶𝑂3(𝑎𝑞) + 𝐻3𝑂(𝑎𝑞) 

Equation 3: (2nd dissociation) 

𝐻𝐶𝑂3(𝑎𝑞) + 𝐻2𝑂(𝑙) ↔ 𝐶𝑂3(𝑎𝑞) + 𝐻3𝑂(𝑎𝑞) 

 

 

 

 

 

 

 

 

 

 

H2CO3 as seen on below dissociation mechanism, which 

means it contains higher H+ level on its first dissociation 

compared to second dissociation. However, this compound 

still gives pKa value of 6.35 which gives pH value of lower 

than of 7 and a conductivity delta measurement of 0.7 mS/cm 

to 1.3 uS/cm when mixed with pure water on standard 

condition. Having this, carbonic acid is a conductive 

compound, hence, detectable by conductive probes. The 

challenge remains on the speciation of carbonic acid ensuring 

all are fully oxidized prior detection. 

 

1.2.2.a Markov Modelling (Stochastic Method) 

 

Markov modeling is a probabilistic technique that predict the 

future behavior of variables based on the current state. 

Markov model has a discrete number of states (q)and the 

transitions (t) between states (S) are nondeterministic. For 

example: there is a probability of transiting from a state qi to 

another state qj : P(St = qj | St−1 = qi ). 

 

This study makes use of Markov chains and modelling to 

predict dissociation value of organics as it undergoes 

multiple oxidation steps (Figure 7). The probabilities of 

occurrence of each state and matrix of transition probabilities 

was used for organics speciation- characterizing good 

(chemistry baseline additives) from bad (contaminants) 

organics component being detected by the analyzer. 

 

 

 

 
 

 

 

Citing the nature and mechanism of Carbonic acid formation 

thru UV oxidation of organic carbon and molecular 

characterization and isolation of organics from its original 

state, this study unveils the feasibility of TOC analysis for 

variety of semiconductor chemistry through carbonic acid 

tracing using in-house UV source and conductivity probes 

powered by multiple machine learning tools- A first to 

Industry contribution for zero chemistry maintenance.  

 

2. 0 REVIEW OF RELATED WORK 

 

Machine learning and artificial intelligence are increasingly 

gaining in prominence through data analysis and automation. 

Machine learning is also making profound changes in 

chemistry applications. [2] 

 

In the study of Glielmo, 2021, the use of Ensembles of 

Decision Tree (EoDT) to analyze the increasingly large 

amounts of chemical structural data to create an accurate and 

powerful atomistic and molecular simulations and model. 

This has resulted to present state-of-the-art algorithms for 

dimensionality reduction, density estimation, and clustering, 

and kinetic models used to analyze molecular simulation data 

as seen in Figure 8. Similar approach was used in this study 

breaking down huge undetectable, unclassified organics 

structure into smaller, classified and detectable form utilizing 

Gaussian and Markov’s unsupervised learning and models. 

 

 

Organic 

 
Carbonic 

 
Figure 6:  
Huge Organic molecule forming carbonic acid after UV exposure 

Figure 7:  
Organics molecule speciation probability thru Markov’s modelling 

showing oxidation factor predictability of organics 

Figure 8:  
Illustration of the chemistry speciation steps to analyze data from 

molecular simulation and machine learning [3] 
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3.0 METHODOLOGY 

 

2.1  Materials  

 

The study covers the following Texas Instruments 

Chemistry listed in Section 1.1 Model X UV-Vis was used 

as UV source with wavelength ranging from 190 to 900 nm 

and Model Y conductivity probe with Multiple Electrode 

Cell was used to measure the sample conductivity response. 

Other metrologies such as HPLC,  FTIR Spectrometer and 

NMR Spectrometers for confirmatory of Organic material 

tracing sourced out both internal and third-party institution. 

Lastly, SPC (Statistical Process Control) was also use to fact 

check tool real performance vs. prediction models. 

 

2.2  Procedure 

 

This study initially carried out by calibrating conductivity 

probe Model Y to measure initial conductivity value of Texas 

instruments chemistries. Probe was calibrated using reference 

standards from supplier to ensure accuracy. Conductivity 

value was reviewed with supplier to assess initial TOC 

capabilities. Use of cationic resin to reduce initial 

conductivity values for samples with readings exceeding 

probe limit of detection. Carbonic acid standards were use as 

sample controls to define method capability via conductivity 

measurements. 

 

Aliquot of Samples were subjected for UV source after 

achieving ideal initial conductivity values, UV-Vis 

spectrometer was used to gather baseline absorbance peaks 

for each aliquot of base make-up (zero organics). Standard 

addition method was done for all samples where samples 

were spiked with known carbonic acid concentration and 

subject for UV source to characterize absorbance peak as 

shown in Table 3. Data were stored in analyzer database as 

reference value of each sample concentration and was use for 

chemistry profiling and speciation via machine learning. 

Post-conductivity measurements were also done to measure 

differences before and after UV oxidation. 

Table 3: Summary of sample treatments and analysis 
Sample Treatment Differential 

Conductivity 

Absorbance Analyzer 

(3rd party) 

Blank 0 Yes - Yes 

Standard 

(Carbonic 

acid) 

5 Yes Yes Yes 

50 Yes Yes - 

100 Yes Yes - 

Sample Young Yes Yes Yes 

Mid-age Yes Yes Yes 

Ageing Yes Yes Yes 

Sample + 

Standard 

Young Yes - - 

Mid-age Yes - - 

Ageing Yes - - 

 

Actual samples of varying life (young, mid-age, ageing) were 

used to measure absorbance peak and correlate carbonic acid 

concentration value through similar standard addition 

method. From there, Beer lambert’s equation was used to 

quantify concentration with conductivity shift at defined 

absorbance. All samples including reference standards were 

subjected for third-party confirmatory test (HPLC, NMR, 

FTIR) to measure capability of new method developed. 

 

 
 

 

Data stored during sample preparation and initial runs were 

used to categorized chemistry from sample type and organics 

type as seen in Table 4. Analyzer was taught to follow the 

decision or response depending on the result of chemistry 

profiling prior actual organics values measurements. The 

results of combined models and decisions were analyzed via 

EoDT as shown in Figure 9 where the true value of organics 

read by the analyzer will decide required maintenance (bleed- 

to dump or feed- to add) Actual tool response was monitored 

after establishing and standardizing new chemistry 

maintenance controls in organics concentration thru in-line 

analyzer powered by machine learning. 

 

Table 4: Summary of Unsupervised machine learning used 
Gaussian 

(Sample type) 

Physical 

Property 
Reactivity 

Chemical 

Property 
Decision 

Category (✓/) (✓/) (✓/) ? 

Markov 

(Organic type) 

No 

Oxidation 

Partial 

Oxidation 

Full 

Oxidation 
Decision 

Speciation x y z ? 

Analyzer (True Organics value) 

EoDT 
(Maintenance) 

NONE BLEED FEED ? 

 

4.0 RESULTS AND DISCUSSION 

 

3.1  Conductivity measurement 

Figure 9:  
Unsupervised Machine Learning framework of the study - Ensemble  

Based on conductivity measurements of carbonic acid 

standards solution, all values remain constant throughout 

the experiment. This is relevant to ensure that target 

analyte in the solution matrix is masked and isolated 

during UV oxidation. 
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Table 5: Conductivity assessment of standards and sample 

PROCESS CHEMISTRY 
VALUE 

(<1k ms/cm2) 

RESULT 

 

POST 

TREATME

NT 

Standard Merck 150 Good  

 FAB & 

BUMP  

Plating 1 >400K Too High <400 

Plating 2 >70K Too High <500 

Plating 3 >90K Too High <700 

Plating 4 >200K Too High <800 

Stripping 1 <300 Good  

Stripping 2 <200 Good  

Flux 1 <200 Good  

ASSEMBL

Y 

Deflash <300 Good  

Rewash <400 Good  

Etch >4K Too High <500 

Plating 5 >10K Too High <500 

 

As shown in Table 5, 46% of total baseline samples (time 

zero bath) analyzed shows low initial conductivity value 

(<1000 ms/cm2 ). Most of these samples are made of polar 

aprotic solvents hence uncontrolled conductivity is no issue. 

Remaining samples on the other hand showed significantly 

high conductivity value exceeding limit of detection of 

conductivity meter and calibration curve. All of these 

samples are electroplating solutions of Bump and assembly 

where presence of free-ions is what causing high conductivity 

value. 

 

Conductivity value greatly improved after cationic resin 

treatments. Initial runs encountered crystallization during 

room temperature treatments specifically for Plating 2. 

This is due to presence of boric acid component crystallizing 

below 40 ºC. Issue was addressed by using a hot plate to 

mimic operating temperature and same treatment was use for 

chemistry processing at elevated temperature. 

 

3.2  UV Oxidation 

 

UV spectrometer results showed distinct broad peaks for 

standard carbonic acid standards from which absorbance 

slope is at 0.9998. This indicates good characterization of 

oxidized organic carbon upon exposure to UV. A full broad 

peak indicates full spectrum indication while a half plot 

indicates partiality.  

TI chemistry at time zero showed characteristic absorbance 

peaks except for Plating 5 and Flux 1 chemistry. These were 

addressed by changing sample preparation of both samples. 

For Plating 5, Millipore filtration was conducted prior UV 

analysis. This is to eliminate excess foaming which affects 

the light absorption under spectrum evident on spectrum 

noises. For Flux 1 sample, acid digestion was made to purify 

the sample. Based on the spectrum, analyte is nowhere to be 

found indicating concentration is too small to detect. 

 

 

 

 

 

Standard addition method shows good plot and r2 for each 

sample treatments. Absorbance value of varying bath life also 

showed strong linear correlation to almost all samples expect 

for Stripping 1 and Plating 5 chemistry. It was confirmed 

through HPLC that both chemistries tend to produce 

amphoteric by-products at ageing condition which masked 

the detection of oxidized organic carbon in any 

spectrophotometer. This was isolated by adding an anti-mask 

agent which recovered peak value by 85%. 

 

Based on the result of Gaussian modeling, chemistry profiled 

in terms of physical property, chemical property and 

reactivity was categorized into 4 Class and 8 functional 

groups. Data was used to profile new chemistry coming from 

same nature. For example, Plating 3 tested positive to 

Tollen’s test (reactivity) denoting that organic is high in 

molecule (chemical property), neutral (physical property) and 

made of Aldehyde detected at 270 nm. All chemistry with 

similar nature was treated under Class E- aldehyde. 

 

Table 6: Results of Clustering using Gaussian modeling 

CLASS A CLASS B 

Carboxy, acid Amine Carboxy, neutral Amide 

Plating 2 

(210 nm) 
Stripping 1 
(200 nm) 

Deflash & 
Rewash (300 nm) 

Plating 1 
(210 nm) 

CLASS S CLASS E 

Alkene Alcohol Aldehyde Ketone 

Plating 4 

(290 nm) 

Stripping 2 & 

Flux 1 (300 nm) 

Plating 3 

(270 nm) 

Plating 5 

(280 nm) 

 

3.3  Carbonic acid as New Chemistry Controls 

 

The absorbance measured for each standard, baseline sample 

(time zero), standard addition and varying age bath was used 

to isolate and correlate detected oxidized organic carbon in 

the form of carbonic acid- a by-product of Carbon + UV. 

 

Shifts in conductivity value was also observed for ageing 

samples exposed to UV-Vis oxidation. The difference in the 

conductivity before and after sample treatments plus the 

Figure 10:  

A B 

C 
D 

Machine Learning- Spectrum of Flux wash chemistry before (A) and after 

(B) sample digestion; Spectrum of Tin matte plate before (C) and after 

(D) filtration to enable distinct peak detection during UV absorbance 
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difference in absorbance peak used in standard addition 

method is at 98.33% matched with theoretical Beer-lambert’s 

value. This indicate that the developed method of analyzing 

carbonic acid trace through UV spectrometer and 

Conductivity meter can be a benchmark in quantifying 

amount of organic carbon present in TI Chemistries. 

 

Table 7: Conductivity measurements of standards and sample 

analysis using Markov’s model 
Sample 

(Plating 4) 

mS/cm2 

Initial 

Abs at 

290nm 

mS/cm2 

Final 

Beer-

lambert’s  

% 

Matching 

Blank 150 0.00 150 0 - 

5 <400 0.01 <400 0 - 

50 <500 0.00 <500 0 - 

100 <700 0.01 <700 0 - 

Actual Samples (Markov model reference) 

Time -0 <710 0.8 >710 15 98.33% 

Mid age <720 1.2 >720 10 100.8% 

Ageing <850 1.6 >850 7.5 100.0% 

πi 0.4 Markov’s Coefficient 

 

Using Plating 4 actual samples data, the transition probability 

of ageing bath in response to concentration value (absorbance 

peak) is at πi = 0.4 showing strong predictability for 

quantifiable oxidized organics at optimum defined 

absorbance of 290 nm denoting full oxidation of unwanted 

organics defined during UV-profiling. 

 

3.4  New Method Confidence 

 

NMR results showed comparable carbon concentration slope 

and r2 compared to new method as seen on Figure 11. 

In terms of concentration, the actual NMR c-count is 

relatively higher which can be attributed to possible presence 

of inorganic carbon detected during chemical analysis. The 

result of external laboratory analysis strengthened the 

correlation of carbonic acid (oxidized organic carbon) 

concentration to chemistry life. 

 

 

 

 

3.5  New Chemistry Maintenance Solution 

New Chemistry limit and maintenance was defined by EoDT 

from combined data of: 

a. Gaussian’s model during UV-profiling 

b. Markov’s model during Carbonic acid 

measurements 

c. SPC trend of bath life vs. Yield, Inspection 

 

Based on the results shown at Table 8, almost all chemistry 

is low risk in enabling zero chemistry maintenance starting 

with chemistry life extension except for deflash chemistry 

which showed inconsistent SPC yield degradation (-50%) at 

lower organic carbon concentration hence recommended to 

tighten bath life. Additional tool to sample chemistry is 

recommended to further extrapolate data. 

 

Table 8: Summary Results used for EoDT Framework 

resulting to Chemistry life extension & Zero maintenance 

New bath maintenance method was introduced by 

implementing partial dumping for chemistry with sudden 

spike of organic carbon build up instead of complete dumping 

once original life limit was reached.  As part of continues 

improvement towards lights-out manufacturing, the 

developed analyzer was converted to in-line tool to monitor 

organic carbon build-up real time. Made of UV Lamp and 

conductivity probes, the new analyzer re-defines total organic 

carbon analysis capabilities for complex chemistries of 

semiconductor manufacturing applications. 

 

 

 

 

 

 

 

 

 

 Chemistry Gaussian Markov SPC   Life 

FAB 

& 

BUMP  

Plating 1 B2 0.30 Y 100% 

Plating 2 A1 0.10 Y 300% 

Plating 3 E1 0.20 Y 300% 

Plating 4 S1 0.40 Y 130% 

Stripping 1 A2 0.10 Y 50% 

Stripping 2 S2 0.10 Y 150% 

Flux 1 S2 0.20 Y 166% 

ASS’Y Deflash B1 1.20 N -50% 

Rewash B1 0.70 Y 266% 

Etch - 0.40 Y 266% 

Plating 5 E2 0.10 Y 50% 

a) Analyzer exterior, b) Interior showing sample inlet, Sensors A & C, 

UV chamber B, Processor D and Signal Converter E, then Outlet, 

c) Multiple tools linked to in-line analyzer 

Figure 12:  Figure 11:  
A) r2 comparison of NMR to HPLC-0.9999; B. r2 comparison of 

NMR to New Analyzer-0.9998 

Scheme: [1] Sample is injected to tool. [2] UV-source oxidized 

sample in defined wavelength and parameter converting 

organics to carbonic acid [3] 2 conductivity probes measure 

differential conductivity value measuring presence carbonic 

acid in real-time [4] Data stored for learning 
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5.0 CONCLUSION 

 

First to industry universal chemical analyzer was developed 

to prove correlation of organic material build-up in multiple 

fab, bump and assembly’s chemistries that limits life and 

degrades efficiency in semiconductor manufacturing. 

Concept was based in lab scale oxidation of total organic 

carbon into carbonic acid thru a UV-source isolated and 

characterized via Gaussian and Markov’s modelling for the 

detection of oxidized specie thru conductivity measurements. 

Multiple challenge surrounding out of tolerance conductivity 

measurements and spectrum noises were solved through 

cationic resin treatments and sample preparation 

modification. Method of standard addition method was also 

used to trace specie of carbonic acid originating from ageing 

bath. Novel method gained 99.989% success rate in tracing 

organic carbon in solutions compared to complex and high-

end analyzer in market. From strong correlation of organic 

concentration to yield degradation, method of defining new 

chemistry life was standardized to TOC (Total organic 

carbon) concentration measurements. With new control, 

existing chemistry life can be extended up to 150 to 300% 

except for deflash chemistry which requires 50% cut in 

current bath life due to abnormal spike in carbon ppm 

requiring further study. New method of bath maintenance and 

reaction plan was defined from complete bath change to 

partial bleed and feed only controlling concentration values 

prognosed by multiple learning ensembles (EoDT). The new 

maintenance system was controlled by Novel analyzer that 

detects build-up of organic carbon concentration in real-time.  

As overall cost impact, the new system improved chemistry 

cost per pattern and cost per pin by 18%. New in-line life 

monitoring and auto-maintenance eliminated 15% Non-

value-added activity for Engineers supporting tool bath 

maintenance and 10% tool availability improvement from 

zero scheduled down time.   

 

The development of the new analyzer powered by machine 

learning opens a new milestone in chemistry applications. To 

achieve its ultimate universal applications, continues testing 

to wider variance of chemistry samples and datasets are 

recommended to further train neural networks for more 

complex and advance algorithms.  

 

6.0 RECOMMENDATIONS 

 

New analyzer is for universal chemistry use and is online to 

more than 15 chemistry and 30 chemical suppliers. Any new 

chemistry especially of high conductivity value need to 

undergo similar assessment prior installation of in-line 

analyzer. Sample must obtain a unique characteristic peak 

and conductivity value that is within the current tolerance. 

Else, challenges need to be resolved through sample 

preparation, method adjustments or new ensemble learning. 

Current analyzer dimension is 0.2 m X 0.3 m to set-up as in-

line monitoring. Currently sourcing out to make a compact, 

smaller and portable versions. It is recommended for new 

analyzer to equip a built-in cryostat for chemistry with 

processing at elevated temperature else must have a short 

chemical line from tank source to minimize any heat loss and 

ensure measurement accuracy. 

It is also recommended to replicate analysis results to all 

production tools to gather more data points to further widen 

the process margin of extended bath life and monitor any 

response shifts in EoDT framework due to wider datasets. 

The new controls in defining bath life through organic 

concentration and Automatic bleed and feed system is 

recommended to all processes and chemistries with suspected 

organic material build-up resulting to manufacturing 

challenges and early chemistry failure. 
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