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ABSTRACT 

 

In the realm of failure analysis, accurate identification of the 

particle morphology is critical to determine the source of 

contamination on hard disk drives (HDDs). The size and 

shape of the particle demonstrates the characteristics and 

properties of material in microscopic level. However, manual 

classification of shape demands human effort making it 

susceptible to inaccuracies and requires substantial time. 

 

This technical paper utilized deep learning methods, 

particularly convolutional neural networks (CNNs) on 

existing microscopic imaging database from scanning 

electron microscopy (SEM) to create a generalized model to 

accurately identify particle morphology.  

 

The implementation of Residual Network 50 (ResNet-50) 

architecture facilitates the classification of ten distinct 

morphological shapes. After processing the training, 

validation, and test set; Particle Morphology Auto-Classifier 

(PMAC) application achieved the target by exceeding 90% 

accuracy rate for Bead, Beads, Droplet, Flat, Tube, 88-89% 

accuracy for Soft and Clustered, and 70-75% for Grain, 

Irregular, and Fiber. 

 

 

1.0 INTRODUCTION 

 

Artificial intelligence (AI) is the utilization of modern 

technological advancements to develop machines and 

computers that can mimic a human brain or perform cognitive 

functions such as processing visual information, responding 

to spoken or written language, reasoning, and data 

analyzation [1]. Machine learning (ML) is a branch of 

artificial intelligence that allows the computer system to 

identify patterns in a big data set. Presently, this technique is 

applied in the field of material science [2].  

 

Deep learning (DL) is a subset of ML that can analyze big 

data set to create an accurate predictive model. DL algorithms 

and models such as Convolutional Neural Networks (CNN) 

and Recurrent Neural Networks (RNN) have demonstrated 

remarkable capabilities in terms of image recognition and 

pattern detection. Thus, it can be used to identify the shape, 

size, and other properties of a particle with high precision and 

accuracy [3]. This approach is ideal for understanding 

particle images from spectroscopy and microscopy methods. 

The creation of these AI-driven methods automates particle 

morphology identification, minimizing bias and accelerating 

the analysis process. Figure 1 demonstrates the relationship 

between AI, ML, and DL and their development through the 

years. 

 

 
Figure 1. Relationship of AI, ML, DL [4]. 

 

ResNet is a commonly used CNN architecture that yields 

high accuracy compared to other architectures; namely, 

AlexNet and GoogLeNet. It is a type of deep convolutional 

neural network that specializes in image classification and 

object detection. It was founded by Microsoft researchers; 

namely, Kaiming He, Xiangyu Zhang, Shaoqing Ren, and 

Jian Sun. It became a successful CNN architecture by 

winning the ImageNet Large Scale Visual Recognition 

Challenge (ILSVRC) in 2015 surpassing the general human 

error rate of 5% via achieving an error rate of only 3.57% [5]. 

ResNet architecture comes in various depths depending on 

the number of layers, such as ResNet-18, ResNet-34, and 

ResNet-50. It enhances the training of more neural layers 

while minimizing the error rate [6,7]. The concept of ResNet 

will be created or applied on the software application called 

“Microsoft VSCode” and using “Python” as the 

programming language. Additionally, creation of PMAC also 

used “Tensorflow,” which is an open-source machine 
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learning library or framework that allows “Keras,” an 

application programming interface (API), to build high-level 

neural network [8]. Collectively, they form a robust 

ecosystem for training and developing machine learning 

models. 

 

When dealing with AI-driven technologies, data is usually 

divided into three sets: training, validation, and test set shown 

on Figure 2. The training set is used to train the network, this 

is where the model learns the pattern of the data. Validation 

set is used to evaluate the performance of the model.  The 

result from the validation set is used to tune the 

hyperparameters to develop the model. The test set is used to 

evaluate the performance of the final model [9,10]. 

 

 
Figure 2. Division of Data [10]. 

 

Using the advanced concepts of AI, engineers of Toshiba 

Yokohama, Japan developed an AI software called "PMAC.” 

This software aims to accurately identify the morphology of 

a contaminant based on its SEM image. Previously, 

classification of images by morphology is manually judged 

by engineers which is prone to human error and time-

consuming.  

 

The shape of a contaminant is essential to the investigation of 

HDD failure in terms of narrowing down the possible root-

cause of the failure. The shape information along with other 

characteristics of the contaminant, such as the elemental 

composition, can be compared with a pre-determined 

contaminant database to generate a list of possible sources of 

failure (e.g., drive parts, environment, process-derived, etc.). 

Moreover, like in any AI software, the performance of PMAC 

highly depends on its training or learning process. Its 

accuracy is said to increase proportionally to the number of 

the training images.   

 

In this paper, 7,125 images were collected and used to train, 

validate, and test the PMAC software—with ResNet50 as the 

DL model and Keras as the library base. The correct answer 

ratio per label, classification accuracy (based on the PMAC 

judgment performance) and generalization performance of 

the whole data will all be measured. The resulting values 

shows the overall judgment accuracy of PMAC. This study 

aims to increase the prediction accuracy PMAC from 

previous 84% accuracy. 

 

 

2.0 REVIEW OF RELATED WORK 

 

2.1 AI-enabled materials research 

With AI technology, scientists were able to accelerate novel 

materials discovery due to enhancement of hypothesis testing 

and data analysis from experimentation. Aside from 

discovery of new materials, researchers were also able to 

design material by examining crystal structure and chemical 

composition based on existing data with the help of deep 

learning algorithms [10]. A study by Dahy et al. (2023), 

utilized 750 images of Palladium nanoparticle to classify its 

particle type (i.e., lines, intersections, networks, ellipses, and 

circles). The team used Visual Geometry Group 19 (VGG-

19) as their deep neural network for feature extraction and 

classification of images. The promising model showed a 97% 

accuracy rate which indicated an excellent performance of the 

nanoparticle classifier from SEM images [11]. Today, AI has 

been widely used by different field of study to create 

breakthrough innovations for the benefit of the world. 

 

2.2 Challenges of Deep Learning 

While deep learning is a powerful tool in the field of AI, there 

is still a need of continuous research and development to 

address its challenges. One of the most common challenges 

of deep learning is the overfitting of data. The purpose of 

deep learning is to create a model that can generalize the 

characteristics of the data; however, overfitting occurs when 

the model adapts closely to the training set [12]. Overfitting 

is a situation where the model memorizes the statistical noise 

instead of learning the patterns of the data. Hence, the model 

tends to perform less when applied to a new dataset. To check 

if the model is overfitted, validation and test set evaluates the 

performance of the trained model by monitoring and 

comparing the loss and accuracy of training and validation 

set. If the model performs well on the training set compared 

to validation set, then the model is overfitted [10]. For the 

past years, ML engineers were able to develop methods on 

how to minimize overfitting in ML. Data augmentation, 

shown in Figure 4, is one of the common ways to reduce 

overfitting of image dependent model. It is a technique of 

creating new images from the original image by flipping, 

rotating, cropping, adjusting contrast and brightness of the 

image, which is applied to PMAC software. With this 

technique, the model will increase the generalization ability 

of the model [13]. 
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Figure 4. Example of Data Augmentation [14]. 

 

 

3.0 METHODOLOGY 

 

The methodology employed in this study encompasses a 

structured approach, beginning with image acquisition 

followed by meticulous image sorting. Subsequently, the 

study proceeds with PMAC Model Training and Data 

Augmentation. Finally, the study culminates in the 

interpretation of the results, wherein the outputs of the model 

are analyzed and evaluated. 

 
Figure 5. Overall Process Flowchart 
 

3.1 Image Acquisition 

A total number of 7, 125 images were collected—with the 

total number of images for each of the 10 shape 

classifications (morphology) shown in Figure 6. Overall data 

was then split into three sets: training, validation, and test.  

 

 
Figure 6. Number of Images per Manual Classification 

 

 

 

 

3.2 Image Sorting 

The training set is comprised of 70% of all the collected 

images, whereas the validation and test sets are both at 15%. 

These percentages, along with their corresponding actual 

values, are demonstrated in Figure 7.  

 

 
Figure 7. Image Distribution per Set 

 

3.3 PMAC Model Training 

Furthermore, Figure 8 shows sample SEM images collected 

per shape classification. These images are fed to the PMAC 

software during its training. Support engineers in Toshiba 

Yokohama performed the model training using a PC specially 

purchased for this purpose. This machine learning hardware 

utilizes Tensorflow + Keras base as its machine learning 

library and ResNet50 as the learning model. Data 

augmentation was also performed to reduce overfitting thus, 

increase PMAC's generalization ability. 

 

 
Figure 8. Sample SEM Images per Shape Classification 
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3.4 Interpretation of Results 

Training the PMAC software generates an accuracy plot, a 

loss plot, and a confusion matrix. These three serves as basis 

of how successful the training was (i.e., AI performance) and 

the accuracy of PMAC in judging the correct morphology per 

image input. 

 

 

4.0 RESULTS AND DISCUSSION 

 

4.1 Overall Accuracy Plot 

 
Figure 9. Overall Accuracy Plot 

 

Validation accuracy measures the performance of the 

correctly classified images that the model hasn’t seen during 

training process. It shows the performance of the model in 

generalizing new and unseen data. The classification 

accuracy plot generated after the model training is shown in 

Figure 9.  It indicates the accuracy of both the training data 

(main/accuracy) and the validation data 

(validation/main/accuracy) in determining the correct 

contamination morphology per image, and the corresponding 

epoch number. An epoch represents the number of times the 

data is fed to the neural network. By repeatedly training the 

data, it can improve the weights. Based on the figure, the 

overall classification accuracy for the training data and the 

validation data approaches 100% and 87%, respectively, as 

the epoch number increases.  

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Overall Loss Plot 

 
Figure 10. Overall Loss Plot 

 

Loss can be described as the difference between the true value 

and predicted value by the model. The larger the loss, the 

larger the errors committed by the model on the data. A loss 

plot was also generated after the training process as shown in 

Figure 10. It can be observed that the error for the shape 

determination by the training data (main/loss) approaches 0 

at epoch numbers above 500. On the other hand, the 

validation data (validation/main/loss) continued to increase 

after 100 epochs and began to show indication of stabilization 

at above 600 epochs—with the best loss achieved at 91 

epochs.  The graph shows that the training set performed 

better than the validation set, which demonstrates the 

presence of overfitting.  

 

4.3 Confusion Matrix 

In machine learning, confusion matrix is used to summarize 

the performance of the model from the test set. It displays the 

number of accurate and inaccurate prediction of the model. 

The classification accuracy per morphology type is given in 

Figure 11. This figure presents the results of the morphology 

determination by the network model using the chosen test 

data as a pair of the correct label input into the model (True 

Label) and the corresponding judgment label output by the 

model (Predicted Label). Normalization was also done to 

generalize the accuracy rate for all morphology 

classifications, since the number of correct predictions per 

shape type varies on their corresponding test data amount. 
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(a) 

 

 
(b) 

 
Figure 11. Confusion Matrix for 23B: (a) Actual (values are by number of 

images) and (b) Normalized (values are by rate) 

 

To understand Figure 11, Grain as an example, 73% is 

predicted by PMAC as Grain, while 21% was misclassified 

as Irregular, 1% as Soft, 1% as Tube, 1% as Clustered, and 

4% as Flat.  

 

Moreover, it can be derived from Figure 11 that there are 

several misclassified images even for morphology types with 

high accuracy rate (i.e., 90% and above). This can be 

attributed to two things. The first being that a limitation of 

PMAC is its low ability to correctly classify morphology 

from images containing a combination of particles with 

varying shapes. Second is in ensuring that training images 

(which are initially manually judged via the naked eye) are 

fed to the model under their correct morphology 

classification. For instance, some irregular particles were fed 

to the model as grain particles instead and vice versa (which 

is reflected in Figure 11 with about 21% of the morphology 

type being misclassified as the other). Thus, creating further 

confusion during PMAC's judging process and decreasing the 

accuracy rate of certain morphology types. 

 

5.0 CONCLUSION 

 

Upon completion of the training, validation, and testing 

procedures, the validation set yielded an accuracy rate of 

87%. Subsequently, during evaluation on the test set, the 

PMAC application surpassed the predefined performance 

threshold, achieving an accuracy rate exceeding 90% for five 

of the ten morphology types. Specifically, these 

classifications include Bead (100%), Beads (96%), Droplet 

(98%), Flat (90%), and Tube (93%). Additionally, two out 10 

morphology types achieved an accuracy rate for Soft (88%) 

and Clustered (89%). Nevertheless, it is noteworthy that the 

PMAC application demonstrated comparatively lower 

accuracy rates for three morphology types, namely Grain 

(73%), Irregular (70%), and Fiber (75%). Potential 

attributions for this shortfall may include constraints from the 

quality of manually classified training images and instances 

of misclassification within the dataset. 

 

6.0 RECOMMENDATIONS 

 

To enhance the performance of the current deep learning 

model and image classification system, our team suggests 

four key improvements. First is to gather and increase the 

number of training images, especially for Fiber, to build a 

more versatile model and to accurately classify wider range 

of particle shape. Second is to improve PMAC’s ability to 

recognize combination of different shapes in a single image, 

as this is the current limitation of the model. Third is to review 

the manually classified images such that it will no longer 

misclassify Irregular, Grain, and Flat particles. Finally, it 

would be beneficial to leverage on alternative CNN 

architecture beyond the current framework to maximize the 

potential or uncover new strategies to enhance the 

performance of the model. By pursuing these 

recommendations, it can significantly enhance the reliability 

and robustness of PMAC in root cause analysis and 

contamination source identification tasks. 
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Appendix A – PMAC Interface with Predicted Result 
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Appendix B – Distribution of Images per Set 

Shape 

Classification 

Number of 

Training 

Images 

Number of 

Validation 

Images 

Number of 

Test 

Images 

Bead 223 48 48 

Beads 452 97 97 

Clustered 638 137 137 

Droplet 603 129 130 

Fiber 34 7 8 

Flat 717 154 154 

Grain 899 193 193 

Irregular 473 101 102 

Soft 634 136 137 

Tube 310 67 67 

Total 4983 1069 1073 

 

Appendix C – Accuracy Plot from previous training (84%) 

 
 


