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ABSTRACT 

 

Incorporating machine learning techniques, particularly 

convolutional neural networks (CNNs), has shown 

remarkable potential in transforming manufacturing 

inspection processes. This project presents a solution for 

enhancing inspection efficiency in the manufacturing 

industry by developing an automated inspection system 

tailored for Critical Dimension Scanning Electron 

Microscopy (CDSEM) images retrieved from a Big Data 

Platform (BDP) server. 

 

The proposed system utilizes custom multiclass image 

classifier models constructed on CNN architectures to 

classify CDSEM images, thereby streamlining the inspection 

process accurately. Additionally, a dashboard is integrated 

into the system, offering summary and detailed inspection 

results. This dashboard also provides valuable insights for the 

quality assurance (QA) team, facilitating informed decision-

making and enabling timely interventions when necessary. 

 

By merging state-of-the-art machine learning techniques with 

intuitive visualization tools, this automated inspection system 

marks a substantial advancement in manufacturing quality 

control. It leads to workforce optimization by 50 percent and 

pledges to enhance the manufacturing industry’s efficiency, 

quality, and reliability of inspection processes. 

 

 

1.0 INTRODUCTION 

 

In Western Digital Philippine Head Office (PHO), Critical 

Dimension Scanning Electron Microscopy (CDSEM) plays a 

crucial role in ensuring the quality and integrity of incoming 

semiconductor wafers. CDSEM images from the Send Ahead 

(SA) monitoring process samples are used to determine 

whether a wafer can proceed to the Main Build (MB) input 

stage. 

 

Traditionally, the CDSEM inspection process involves 

capturing CDSEM images of SA samples, followed by a 

manual inspection by the Supplier Quality Engineering 

(SQE) team. They evaluate the images based on established 

criteria via a monitor. Subsequently, the SQE team utilizes 

their inspection judgment results of the samples representing 

the wafer. Pass wafers are released into the system, while 

wafers with samples requiring more attention undergo further 

risk assessment to mitigate potential downstream impacts. 

See Fig. 1 for the traditional CDSEM Manual Inspection 

Flow. 

 

 

 
 

Fig. 1. Traditional CDSEM Manual Inspection Flow. Manually generated 

reports contain the following: Process Control Sheet (PCS), Defects Parts 
Per Million (DPPM), Lot Acceptance Rate (LAR), Defect Images, and Wafer 

Map. 

 

While the traditional CDSEM inspection process serves its 

purpose, it also presents several challenges. Firstly, it 

demands round-the-clock support from operators and 

technicians, increasing operational costs and potential human 

errors. Secondly, the manual gathering of inspection results 

and generation of multiple reports add to the administrative 

burden, hindering efficiency and timely decision-making. In 

response to these challenges, there is a pressing need for 

innovative solutions that harness the power of advanced 

technologies to streamline the CDSEM inspection process, 

improve accuracy, and reduce dependency on manual labor. 

 

This project presents a novel approach to addressing these 

challenges by proposing the development of an automated 

inspection system leveraging machine learning techniques, 

specifically convolutional neural networks (CNNs), to 

classify CDSEM images. Additionally, the system 

incorporates a dashboard to provide comprehensive insights 

into inspection results, empowering the SQE team with 

actionable information for effective decision-making. By 

integrating cutting-edge technology and intuitive 

visualization tools, this automated inspection system can 

revolutionize CDSEM inspection processes, enhancing 

mailto:jerald.constantino@wdc.com
mailto:james.gonzales@wdc.com


33rd ASEMEP National Technical Symposium 
 
 

 2 

efficiency, accuracy, and quality control in semiconductor 

manufacturing. 

 

 

2.0 REVIEW OF RELATED WORK 

 

The utilization and enhancement of CDSEM has recently 

gained significant attention in the semiconductor industry and 

research field. For instance, several studies have focused on 

improving the cycle time of CDSEM measurement by 

proposing a new wafer alignment methodology and data 

storage optimization strategies1. Another study explored the 

opportunities of employing a generative adversarial network 

to improve low-quality images2. Furthermore, previous 

research had extended the usage of CDSEM tools by 

implementing on-device, target-free overlay measurements3. 

It involves extracting sub-pixel contours from CDSEM 

images and using design data to calculate overlay differences. 

Meanwhile, further study has developed an unsupervised 

machine learning model for process window monitoring4. 

The algorithm extracts critical features from a dataset of 

CDSEM images, encodes them into latent feature vectors, 

and ranks images based on similarity indices. Lastly, another 

study employed a deep learning model to enhance the 3D 

profiling accuracy of high aspect ratio features using high-

voltage CDSEM5. These advancements pave the way for 

further exploration of CDSEM’s potential, particularly in 

real-time process monitoring and defect detection during 

production. 

 

While deep learning finds applications in various fields such 

as defect detection6, predictive maintenance7, financial 

forecasting8, and recommendation systems9, this project 

focuses on utilizing deep learning for multiclass image 

classification of defects in CDSEM-generated images. 

 

This project utilized a deep learning technique called 

multiclass defect classification based on the Visual Geometry 

Group (VGG) architecture. The VGG network has gained 

popularity in recent years for image classification due to its 

balance of performance and simplicity. Its design prioritizes 

high accuracy by using deep convolutional layers with small 

kernels. It effectively captures complex image features, 

leading to impressive results, especially for large datasets10. 

 

 

3.0 METHODOLOGY 

 

Although the traditional CDSEM inspection process fulfills 

its purpose, it also presents several challenges. Manually 

transferring and storing images is time-consuming, and the 

potential to make mistakes may lead to scattered data and 

difficulty tracking trends. Furthermore, manually classifying 

defects is slow and subjective, hindering consistent analysis. 

Static reports offer limited insights, making proactive 

decision-making challenging. 

 

 

3.1 CDSEM AI Process Flow 

 

This project addresses the pain points directly (refer to Fig. 2 

for the project’s flow). By leveraging a BDP server, CDSEM 

images are consolidated and securely archived. 

Subsequently, an automated CDSEM (Automated 

Inspection) AI model classifies defects within the images, 

saving valuable time and ensuring consistent results. These 

classifications are then translated into interactive 

visualizations on a user-friendly dashboard, providing the 

most up-to-date production insights. An auto-email alert 

system also notifies relevant personnel of critical findings, 

facilitating faster response times. This project streamlines the 

CDSEM inspection process by automating tedious tasks and 

offering real-time data visibility. It leads to increased 

efficiency, improved accuracy in defect classification, 

enhanced production visibility, quicker problem-solving 

through timely alerts, and data-driven decision-making for 

optimized production quality and yield. 

 

 

 
 

Fig. 2. The updated project flow with automation on CDSEM inspection and 

report generation through dashboards and email reports. 

 
 

3.2 Data Architecture 

 

 
 

Fig. 3. High-level data architecture of the project. 

 

Illustrated in Fig. 3 is the high-level data architecture of the 

project. The BDP Server acts as a repository for CDSEM 

images of wafer samples. Complementing this is the General 

Reference Table, a data source containing details about class 

information and standard reference data for the products. 
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The deployed model is containerized using Docker within an 

edge cluster. It ingests the images for classification. The 

scheduler module processes the classification results in 

metadata and uploads this information to the CDSEM image. 

The Database Update module updates the dashboard’s 

database by processing information from the classification 

results and the general reference table. 

 

The Analytics Dashboard Platform houses a database updated 

by a dedicated module. The platform boasts an interactive 

dashboard and an auto-email alert module, rounding out the 

functionality. 

 

 

3.3 CDSEM Imaging Slider Images 

 

 
 
Fig. 4. Sample CDSEM images for low and high magnification inspection 

process. 

 

Before the wafers proceed to their subsequent processing 

destination, the wafer slider samples undergo CDSEM 

imaging. This process involves two magnification modes: 

high magnification (highmag) and low magnification 

(lowmag). Each magnification has its own set of classes. Fig. 

4 shows a sample of CDSEM images for highmag and 

lowmag. 

 

Image samples manually classified for highmag and lowmag 

processes are used to train and develop this project’s two 

multiclass image classification models. 

 

 

3.4 CDSEM AI CNN Architecture 

 

The CDSEM CNN architecture is illustrated in Fig. 5. It is 

based on the VGG network for its simplicity and 

effectiveness. The network takes a constant input image size 

of 512 x512 grayscale pixels. 

 

Convolutional layers, followed by max-pooling layers, are 

used throughout the network. These layers extract features 

from the images and reduce their spatial dimensions. Each 

convolutional layer uses a ReLU activation function to 

introduce non-linearity. After several convolutional and max-

pooling layers, global average pooling is applied to reduce 

spatial dimensions further and extract global features. 

 

The output from the global average pooling layer then travels 

through fully connected dense layers with ReLU activation 

for classification. A dropout layer with a rate of “D” is 

included to prevent the model from overfitting during 

training.  The final layer has a different number of units 

depending on the model type: “H” units for the high-

magnification model (corresponding to the number of class 

types) and “L” units for the low-magnification model. 

 

Finally, a sigmoid activation function is applied to the final 

layer for multiclass classification tasks. Sigmoid is chosen 

because the model is expected to classify an image that 

belongs to multiple classes independent of each other. Each 

output neuron in the final layer corresponds to a binary 

decision (“1” for presence and “0” for absence) for a specific 

class. Sigmoid activation is preferred over the common 

multiclass activation SoftMax function for this case because 

understanding the probability of each class is considered 

more important than having a strict probability distribution 

across all classes.  The CNN’s output, a list of probabilities 

for each class, is then further processed by applying a 

threshold to each class based on user-defined criticality 

levels. 

 

CDSEM images with no predicted classification (zero 

probability) from the models will be assigned an “unknown 

class.” These images are collected for future training, 

ensuring continuous improvement and adaptation of the 

models to evolving inspection requirements. 

 

 
 
Fig. 5. VGG-based CDSEM CNN architecture. 

 

 

3.5 Machine Learning Development Life Cycle 

 

 
 
Fig. 6. Machine learning development and deployment workflow. 

 

The machine learning development life cycle for multiclass 

image classification encompasses several vital stages: Image 
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dataset preparation and preprocessing, model training, 

testing, and deployment (see Fig. 6). This iterative process is 

crucial for building and deploying effective defect 

classification systems. The following sections elaborate on 

each stage of this development life cycle: 

 

 

3.5.1 Data Preparation and Preprocessing 

 

The CDSEM images containing good and defective samples 

are gathered from the BDP at this stage. Folders are created 

for each category, including major, minor, and monitoring 

defects. Each image is then categorized and stored in the 

folder associated with its respective defect type. 

Subsequently, the dataset is partitioned into training, testing, 

and validation subsets. The training dataset is utilized to train 

the model, while the testing and validation datasets are 

employed to evaluate its performance and generalize its 

ability to unseen data. 

 

 

3.5.2 Classification Model Training and Evaluation 

 

During this stage, the prepared dataset is used to train a deep 

learning model to recognize and classify defects within the 

images. As illustrated in Fig. 5, The model’s architecture is 

configured with layers based on the VGG network. Training 

also involves optimizing the model’s parameters by 

configuring different optimizers, learning rates, batch size, 

and other essential hyperparameters. Confusion matrix is also 

utilized to provide a comprehensive breakdown of a model’s 

performance, highlighting areas of over or under-rejection, 

which is crucial for understanding where the model might be 

making errors. 

 

 

3.5.3 Classification Model Testing and Inference 

 

Following training and evaluation, the trained model is tested 

using the validation dataset to assess its generalization 

performance on unseen defect instances. This step ensures 

that the model can effectively detect defects in real-world 

scenarios. The model is deployed during inference to predict 

new images and identify defects within them. 
 
 

3.5.4 Model Deployment 

 

Once the trained model has provided a reasonable prediction 

output during the testing and inference stage, the model will 

then integrate with the CDSEM AI system and deploy on the 

edge cluster. The system runs every nth hour to fetch data 

from the BDP. It performs the classification task to produce 

a prediction output displayed on the dashboard for monitoring 

purposes. The CDSEM AI system will also generate a 

metadata tag containing information about the predicted 

category name and its associated probability. This metadata 

tag will be uploaded to the BDP, as shown in Fig. 7. 

 

 

 
 

Fig. 7. The metadata tag for prediction result is uploaded in BDP. 
 

 

3.6 Dashboard 

 

Using the Analytics dashboard platform, a dashboard is 

created to visualize and interact with the status tables and 

trend charts. This dashboard is a vital tool for defect analysis, 

providing stakeholders with actionable insights to improve 

production efficiency. The dashboards feature the overall 

distribution of defect categories per day, daily lot rejection 

rate, and defect trend per wafer. It also includes information 

about the final disposition and whether the wafer can be 

released or held. Lastly, it also contains a wafer map where 

the user can track the location of the slider with its specific 

defects in the wafer. See the Appendix for some of the 

features of the dashboard. 

 

 

4.0 RESULTS AND DISCUSSION 

 

Implementing the CDSEM AI system has brought about 

notable improvements in the efficiency and accuracy of 

inspection processes. These systems can accurately analyze 

images, significantly reducing the need for manual 

intervention using the created CNN architecture based on the 

VGG network. Consequently, this has substantially 

optimized the workforce required for the inspection process 

by as much as 50 percent. By automating repetitive tasks and 

streamlining workflows, CDSEM personnel can allocate their 

time more effectively to strategic and value-added activities. 

 

Moreover, integrating an automated dashboard and Key 

Performance Indicator charts has provided real-time insights 

into the performance of the inspection processes. These 

dashboards offer a comprehensive overview of key metrics 

such as defect detection rates, inspection throughput, and 

quality assurance metrics, enabling timely decision-making 

and process optimization. Additionally, automated 

notification systems have been implemented to streamline the 

communication process for holding and releasing wafers 

based on inspection results. Automatically generating alerts 
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and notifications ensures prompt action in response to 

identified defects or anomalies, minimizing production 

delays, and optimizing yield. 

 

Furthermore, automated inspection systems have 

standardized the inspection process, eliminating variation 

introduced by human judgment. Moreover, the custom CNN 

architecture enables the system to enhance sensitivity to 

unusual defects or anomalies that might be overlooked in 

manual inspection. It improves defect detection rates and 

enhances overall product quality. Overall, implementing 

automated image inspection systems has yielded significant 

benefits in efficiency, accuracy, and process optimization, 

ultimately leading to enhanced productivity and product 

quality. 

 

 

5.0 CONCLUSION 

 

In conclusion, adopting automated image inspection and 

judgment systems has revolutionized inspection processes, 

significantly improving efficiency, accuracy, and process 

optimization. Through deep learning algorithms, manual 

intervention has seen a remarkable reduction, leading to 

workforce optimization by 50 percent. Integrating automated 

interactive dashboards and KPI charts has provided 

invaluable real-time insights, enabling timely decision-

making and effective process optimization. Additionally, 

implementing automated notification systems has 

streamlined communication and minimized production 

delays, ultimately optimizing yield. 

 

Furthermore, standardizing the inspection process and 

enhancing sensitivity to unusual defects achieved through 

automation has improved defect detection rates and overall 

product quality. 

 

As the company embraces technological innovation, its 

commitment to automation ensures competitiveness in the 

global market. 

 

 

6.0 RECOMMENDATIONS 

 

Based on the findings of the project, the following 

recommendations are proposed to improve the processes 

further: 

 

Explore Alternative Object Detection and Classification 

Algorithms. It is recommended that alternative object 

detection and classification algorithms be explored to 

enhance the classification model’s performance. By 

experimenting with different algorithms, approaches can be 

identified that offer superior accuracy and efficiency, 

improving the overall effectiveness of the image 

classification system. 

 

Fully Automate Final Wafer Disposition. Integrating 

CDSEM AI with the company’s auto-holding system can 

further streamline the processes by fully automating the final 

wafer disposition. By seamlessly integrating AI-driven 

CDSEM capabilities with the existing systems, greater 

efficiency, and accuracy in determining the disposition of 

wafers might be achieved. 

 

Enhance Dashboard Functionality. The dashboard’s 

functionality should be enhanced to meet the evolving needs 

of the end users. 

 

By implementing these recommendations and pursuing 

future work, we can continue to enhance our image inspection 

and classification systems’ effectiveness, efficiency, and 

reliability, driving continuous improvement and innovation 

within our organization. 
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10.0 APPENDIX 
 

Appendix A – The Final Wafer Disposition per Wafer and 

per Inspection Process. The table contains information 

about which wafers should be held or released. It also 

includes the predicted number of sliders, the total defect, and 

the defect rate detected within the wafer. 

 

 
 

 

Appendix B – The Wafer Map and the Location of the 

Defected Slider for the Selected Wafer. The illustration 

provides a representation of Sliders and their associated 

defects within the wafer. A summary table for each detected 

defect is also provided on the right side of the dashboard. 

 

 

 

Appendix C – The Auto-Email Alerts. Two emails are sent 

to the users. The first is a snapshot alert of the current trend 

regularly sent to users. The second is an immediate auto-

email alert sent when the final wafer dispositions are held. 

 

 


