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ABSTRACT 

 

In the competitive field of semiconductor manufacturing, 

ensuring the timely delivery of high-quality products to 

customers is paramount. Leveraging recent advancements in 

imaging technology and artificial intelligence, Automated 

Optical Inspection (AOI) systems are now increasingly 

adopted to replace slow, manual inspection methods. 

 

A typical AOI setup can cost around $20,000 USD which 

includes computers, cameras, lighting systems and computer 

vision software applications. In pursuit of cost-effectiveness, 

onsemi Carmona made a significant investment in the 

development of an in-house computer vision system. This 

system plays a vital role in transforming traditional manual 

inspection into a sophisticated automated optical inspection 

process by deploying both rule-based image processing 

techniques and deep learning models. 

 

This paper delves into the early challenges and recent 

improvements in developing computer vision systems for 

defect detection. It also highlights the drawbacks of 

conventional image processing techniques compared to the 

deep learning approach. 

 

The paper used mold package defect detection as a case study 

demonstrating the superiority of deep learning models. 

Notably, YOLOv8 (You Only Look Once version 8) emerged 

as a powerful solution with 99.28% accuracy. This 

outperformed conventional rule-based image processing 

techniques that were used initially. 

 

 

1.0 INTRODUCTION 

 

The mold assembly process has long been associated with 

package defects, which can arise from various factors such as 

human-induced causes and machine issues. Common defects 

include voids, package chipping, scratches, foreign material, 

and cracks. In this context, mold manual vision inspection 

becomes an ideal starting point for automation. 

 

The in-house computer vision system, developed by the team, 

utilizes an Ultra-HD 4K camera integrated with locally 

fabricated handling equipment. However, its performance on 

mold samples falls short of the company’s standards. Figure 

1 shows an MSA trial result achieving only 86.3% accuracy 

with false alarm rate of 11.74% and miss rate of 36.36%. 

These suboptimal performance metrics pose risks both to 

customers in terms of quality and to the manufacturer due to 

potential yield loss. Maintaining high accuracy in computer 

vision systems is crucial, especially when dealing with 

quality control and manufacturing processes. Balancing false 

alarms and misses is a delicate task and improvements in the 

software can lead to better outcomes for both customers and 

the company. 

 

 
Figure 1. Measurement Systems Analysis (MSA) Reject Map vs Rule-based 
Output Map. MSA Reject Map is at the top while the Rule-Based Output 

Map is at the bottom. The performance metrics of the Rule-based method, 

employing set rules with image processing techniques, had an accuracy of 
86.3%, a miss rate of 36.36%, and a false alarm rate of 11.74%. 

 

1.1 Rule-based Image Processing Techniques and 

Limitations 

 

Rule-based image processing techniques are among the 

earliest methods used in computer vision systems. This 

traditional approach aims to classify objects within an image 

for various purposes. Essentially, developers implement rules 

and algorithms to process images. These rules often involve 

logical conditions expressed through code. The acceptance or 

rejection of specific features in an image is typically based on 

measures such as thresholds, object counts, standard 

deviation and area in terms of pixels. 

 

1.1.1 Thresholding 

 

In the initial stages of recipe creation, colored images 

captured by the camera are converted into grayscale. For 

binary, pixel intensities below the threshold value become 0 
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(black), and those above it become 255 (white). The opposite 

is true for binary inverse thresholding. Figure 2 shows the 

binary and binary thresholding processes with a defined 

threshold value. 

 

 
Figure 2. Binary and Binary Inverse Thresholding. The first image displays 

a grayscale image with varying pixel intensities, which can be converted into 
numeric values. The second image represents binary thresholding. In this 

process, intensity values below a specified threshold become black, while 

those above it become white. The third image, on the right, is the opposite of 

binary thresholding, referred to as binary inverse thresholding. 

 

Figure 3 shows an example of using binary thresholding to 

isolate the void defect from an image as part of the recipe 

creation process. The light-colored void within the image 

becomes a separate object, while the remaining portion of the 

package serves as the background. 
 

 
Figure 3. Recipe Test Creation for Void Detection using a sample image. 

Voids refer to the presence of porous-like empty cavities on the molded 

package surface. These are visually manifested as pinholes, pits, spherical 
holes, or crater-like features. 

 

Figure 4 shows the void detection test result of a sample unit. 

While the original image is converted to binary thresholding, 

the isolated void defect is not easily seen compared to the test 

recipe. This causes its pixel values to fall beneath the recipe’s 

threshold limit. Consequently, the defect is undetected due to 

the recipe’s inability to accurately segment the image. 

 

 
Figure 4. Void Defect Detection Test Result in Sample Unit.  A void defect 
seen as a pit hole appears to have the same color as the rest of the captured 

unit, showing a missed detection despite correct defect classification. 

 

To address the issue of defects having varying threshold 

values for segmentation purposes, the recipe is enhanced with 

additional tests to accommodate different scenarios or defect 

variations. Typically, variations in color necessitate multiple 

tests, which in turn add extra cycle time to the inspection 

process. 

 

1.1.2 Fixed Region of Interest versus Variable Indexing 

 

One of first requirements in building an automated optical 

inspection recipe is to set the ROI (Region of Interest). ROI 

defines the borders on which the operations of the image 

processing application take place. Figure 5 shows a test recipe 

with set ROI for detection of voids within the area. Areas 

outside of the ROI are not considered during the analysis of 

the image. 

 

 
 

Figure 5. Region of Interest (ROI) for a Void Defect Detection Recipe. The 
figure shows a recipe for detecting voids using a rectangular border, serving 

as the Region of Interest (ROI). The rectangular box area is where the 

analysis is expected to occur. 

 

Figure 6 shows a test result of a sample unit with the 

positional shift of the ROI. This shift is attributed to minute 

variations in mechanical shifting of the handler or the lead 

frame itself, even those as small as a few microns. This can 

result in a failure in detection since void falls outside the ROI. 

 

 
 
Figure 6. Region of Interest (ROI) for a Void Defect Detection Recipe. The 

figure illustrates a positional shift of the ROI. The void, situated in the upper 

left section, falls outside the ROI, leading to a failure in detection. 

 

1.1.2 Filtering 

 

In creating recipes for automated optical inspection, it is 

important to consider the varied sizes of defects. Some 

defects falling under the same category can come in varied 

sizes, color, and shapes. Voids for example can look like a 

large crater and some can look like a small pin hole. It is 

advisable when using a rule-based image processing 

technique to create multiple inspection tests to account for 

these variations. One technique that can detect the smallest 
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defect size is filter coverage. Figure 7 shows the application 

of filter coverage, reducing noise by filtering out supposed 

defects too small to meet the actual rejection criteria. 

 

 
Figure 7. Filter coverage for a Void Defect Detection Test Recipe. The figure 
shows a small void defect, where a specified filter coverage limit value 

enables the recognition of a clump of black pixels as voids within this recipe. 

 

Figure 8 shows a test result of a sample unit with the 

application of filter coverage. Numerous clumps of dark 

pixels are displayed which fall within the filter coverage limit 

value. This results in these clumps not filtered as noise. This 

circumstance can trigger a false alarm, suggesting the 

existence of any void where there is none.  

 

 
Figure 8. Filter coverage for a Void Defect Detection Test Recipe. The figure 

displays a new image featuring numerous clumps of dark pixels. This 
circumstance can trigger a false alarm, suggesting the existence of any void 

where there is none. 

 

 

2.0 REVIEW OF RELATED WORK OR 

LITERATURE 

 

Saberironaghi et al. [1] reviewed the use of deep learning 

techniques, such as R-CNN, ResNet50, and ShuffleNetV2 

convolutional neural networks, for defect detection on 

industrial products. Examples of defect detection include 

corrosion detection and metal defect detection. It also 

acknowledges the common challenges in defect detection 

such as unbalanced sample identification, limited sample size 

of defects, and real-time processing.   

 

Dehaerne et al. [2] optimized the use of YOLOv7 for 

Semiconductor Defect Detection. A dataset of SEM 

(scanning electron microscopy) images was used for model 

training as they produce high-resolution images for 

inspecting defects at the nanometer scale. Defect instances of 

the image dataset include line collapse, gap, p-gap, bridge, or 

microbridge defects. The base YOLOv7 model achieved a 

mean average precision (mAP) of 79%. This was then 

improved to 86.8% by adjusting certain hyperparameters 

during model training. 

 

Xiao et al. [3] proposed a Deep Learning-based defect 

detection algorithm for Printed Circuit Boards (PCBs) based 

on CDI-YOLO. The network structure of CDI-YOLO is seen 

as an improvement of YOLOv7, a previous version of 

YOLOv8. The results of their methodology produced a mean 

average precision (mAP) of 98.7% on a sample PCB defect 

dataset with a detection speed of 128 frames per second. 

 

Trinidad et al. [4] conducted a previous case study where a 

Deep Learning model was trained by another Convolutional 

Neural Network called ResNet50. The model is used to 

identify Personal Protective Equipment (PPE) worn by the 

operator before accessing bake ovens. The case study 

achieved an impressive accuracy of 99.6% and successfully 

differentiated between proper and improper wearing of PPE. 

 

 

3.0 METHODOLOGY 

 

3.1 Data Collection 

 

Deep learning for object detection requires large quantities of 

data for the model to perform well. Figure 9 shows the in-

house developed handling equipment, with two bar lights 

attached as side lightings to illuminate each unit surface 

during image capturing. Side lightings are effective in 

highlighting surface contours and particularly effective in 

detecting defects such as cracks, scratches, and pits. With the 

equipment, the team initially collected images from 15 strips 

of TSSOP devices containing 256 units for each strip. The 

handler is equipped with an Ultra HD 4K camera that can 

capture an image with an original size of 1920 X 1080 pixels. 

An auto-crop feature was employed to reduce the image size 

to 958 X 1077 pixels, effectively removing regions that are 

not included in the inspection process. 

 

 
 

Figure 9. AOI Machine Camera Setup with Integrated Lighting for Image 

Capture. The figure demonstrates the application of an Ultra HD 4K camera, 
equipped with two bar lights for side package illumination. It also provides 

a preview of the image captured from a single unit under each lighting 

condition. 
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3.2 Annotation 

 

In object detection tasks, annotating images with descriptive 

labels is crucial for training models. LabelMe, an open-source 

graphical annotation tool, is widely used for this purpose. 

Defects within the images can be annotated using various 

forms such as lines, points, and rectangles. These defects are 

then labeled according to their respective categories. Figure 

10 shows an example of annotating a void defect from an 

image. 

 

 
 

Figure 10. Sample Annotation of Defects in Image. The figure shows an 

annotation task carried out on a unit with a void defect using LabelMe. 

 

3.3 Conversion from JSON to YOLO 

 

After using LabelMe for object detection annotation task, the 

initial file format of the labels is in JSON (JavaScript Object 

Notation). To train a YOLOv8 model, the JSON file needs to 

be converted to a text format. Figure 11 shows a sample label 

file of a converted JSON file. This conversion can be 

achieved by running a “labelmetoYolo” script. 

 

 
 

Figure 11. Sample Label File for an Image in JSON Format. The figure 

presents a sample label file of an image, structured in JSON format. The 

file’s contents show the rejects identified within the image. 
 

3.4 Model Training 

 

YOLOv8, as it is called on the Ultralytics website, represents 

the latest iteration of the renowned real-time object detection 

and image segmentation model. Leveraging state-of-the-art 

advancements in deep learning and computer vision, 

YOLOv8 is designed for high-performance tasks. Figure 12 

shows an in-house application for YOLOv8 also developed 

to streamline model training tasks. Initially, the data is 

divided into two sets: training and validation. To simplify the 

process, the team focused on binary classification, 

specifically identifying units as either ‘good’ or having ‘void 

defects.’ The data split serves the purpose of training the 

model and evaluating its performance. After training for 64 

epochs, the model retains the best weights for optimal results. 

 

 

 
 

Figure 12. YOLOv8 Model Training using a Custom UI Application. The 

figure shows the model training process carried out in YOLOv8 using a 
custom-built user interface specifically designed for training deep learning 

models. 

 

When model training is finished, its output will include a 

generated best model along with the statistical results of the 

process. Figure 13 shows a selection of images also displayed 

in the output trained with YOLOv8. 

 

 
 
Figure 13. YOLOv8 Model Training with an Image Dataset. The figure 

displays a selection of images that have been trained using the YOLOv8 

model. 
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4.0 RESULTS AND DISCUSSION 

 

4.1 Accuracy of Model Training 

 

The overall loss components in YOLOv8 are the box_loss 

(Box Loss), cls_loss (Classification Loss) and dfl_loss (Dual 

Focal Loss). Figure 14 shows these three loss components in 

a downward trend. Box loss is the measured error between 

the bounding box and the ground truth bounding box 

coordinates. Classification Loss is the classification accuracy 

where the object class is correctly predicted. Lastly, the Dual 

Focal Loss addresses the problem of class imbalance. It 

adjusts the loss function to give more importance to less 

frequent classes. 

 

 
 
Figure 14. Loss Metrics Over Training Epochs for Both Training and 

Validation Sets. The figure shows the progression of box_loss, cls_loss, and 

dfl_loss for both the training and validation sets over increasing number of 
epochs. A clear downward trend is observed, indicating that the model’s 

accuracy is improving during the training process. 

 

The optimal model is chosen based on the highest mAP 

(Mean Average Precision) score. Figure 15 shows the mAP 

score reflecting how effectively the model localizes and 

classifies objects. 

 

 
 
Figure 15. Peak Model Performance Accuracy Score. The figure shows the 

peak mAP value of 0.74 achieved at epoch 48. This peak value signifies the 
model’s optimal performance effectiveness in terms of both localization and 

classification accuracy. 

4.2 Prediction Result 

 

To assess the performance of rule-based image processing 

versus YOLOv8, the team collected a sample of 276 images. 

These images contained randomly selected units, both ‘good’ 

and those with ‘void defects.’ Figure 16 shows the result 

comparison of Rule-based image processing and YOLOv8. 

Rule-based image processing scored a moderate 77.17% with 

14.22% miss rate and around 60.78% in false alarm. It 

predicted all the units with defects. However, most of it was 

not actually captured but pointed to a different part of the 

package. In contrast, YOLOv8 exhibited near zero false 

alarms and zero miss rate. It correctly predicted the defects 

and its location in the package. 

 
Method Accuracy Miss False Alarm 

Rule-based Image Processing 77.17% 14.22% 60.78% 

YOLOv8 99.28% 0% 3.9% 

 

Figure 16. Rule-based method vs. YOLOv8 results. The table shows that the 
accuracy of YOLOv8 greatly surpassed that of rule-based image processing 

performance.  

 

Figure 17 shows sample images of units classified as rejects 

using Rule-based image processing. However, many of these 

detections are inaccurately positioned, not aligning with the 

actual locations of the defects. 

 
 

 
 
Figure 17. Sample images of Units classified as Voids with Low Positional 

Accuracy using Rule-Based image processing. The figure shows that the 

rule-based method classified many units as rejects but with inaccurate 

positioning.  
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Figure 18 shows sample images of units misclassified as 

misses using Rule-based image processing. The void defects 

seen in the units were not captured by the recipe in the rule-

based method, contributing to the miss rate. 

 

 
 

Figure 18. Sample images of Misclassified Units using Rule-Based method. 

The figure shows examples of misclassified units that exhibit actual void 
defects but were not captured using the rule-based image processing method 

(miss-rate). 

 

Figure 19 shows sample images of units also misclassified as 

false alarms using Rule-based image processing. The units 

were declared as having void defects despite not exhibiting 

such defects.  

 

 
 

Figure 19. Sample images of Misclassified Units as False Alarm using Rule-

Based method. The figure shows examples of misclassified units that were 
declared as failures using rule-based image processing, despite not exhibiting 

any actual void defect (false-alarms). 

 

Figure 20 shows sample images of units correctly classified 

using a YOLOv8 model. The defects were successfully 

captured with their precise locations in each unit. 

 

 
 

Figure 20. Sample images of accurately classified Units using YOLOv8. The 

figure demonstrates that the YOLOv8 model accurately classified void 
defects in their correct locations. (high accuracy). 

 

Figure 21 shows the two misclassified units as false alarms 

using a YOLOv8 model. A highly minimal false alarm rate is 

still provided by YOLOv8, ensuring a higher accuracy than 

the rule-based method. 

 

 
 
Figure 21. Sample images of Misclassified Units as False Alarm using 

YOLOv8. The figure shows only 2 misclassified units out of 276 without an 

actual void defect using YOLOv8 (minimal false-alarm rate). 
 

Figure 22 shows more images gathered with various defects 

to validate whether YOLOv8 can effectively detect more 

mold defects. These images were annotated and trained using 

LabelMe and YOLOv8 respectively. Subsequently, a 

separate set of test images was analyzed using the trained 

YOLOv8 model. The results were promising, with the 

custom-built YOLOv8 model precisely identifying the reject 

category corresponding to the observed defects. The defects 

include incomplete fill, scratches, voids, chipping, ejector pin 

damage and contamination. 

 

 
 

Figure 22. More images of accurately classified Units using YOLOv8. The 
shows a variety of defects captured by YOLOv8. This was achieved by 

training on annotated images with multiple defect categories. The 

effectiveness of YOLOv8 in identifying multiple defect categories is clearly 
demonstrated in the figure. 

 

 

5.0 CONCLUSION 

 

As discussed in Section 1.0, an in-house computer vision 

system was developed to transform manual inspection into an 

automated optical inspection process as an initiative towards 

cost-effectiveness. At first, the system utilized rule-based 

image processing techniques for mold defect detection. 

However, it only achieved an accuracy of 86.3% with a false 

alarm rate of 11.74% and a miss rate of 36.36% during 



33rd ASEMEP National Technical Symposium 
 
 

 7 

Measurement Systems Analysis (MSA) Testing. These 

results fall below company standards. 

  

Section 3 discussed that by employing YOLOv8, it can 

deliver better results when provided with a sufficient dataset 

for model training. It also managed to more accurately locate 

each defect per unit during testing and provide more 

flexibility in object detection. Using the same image dataset 

to test the accuracy of the two methods, YOLOv8 provided a 

99.28% accuracy with near-zero false alarm rate and zero 

miss rate. Meanwhile, the rule-based method only provided a 

77.17% accuracy with a false alarm rate of 60.78% and a miss 

rate of 14.22%. 

  

In conclusion, YOLOv8 deep learning models proved to be a 

superior alternative to rule-based image processing. 

 

 

6.0 RECOMMENDATIONS 

 

While deep-learning-based methodologies can be used for 

image classification, it is also resource-intensive. This will 

require high-performance hardware like CPUs/GPUs for 

training deep learning models. Large quantities of data such 

as images are also required for a more optimal model 

performance.  

 

In manufacturing settings, where manual inspection 

processes remain prevalent, YOLOv8 offers a cost-effective 

alternative to traditional AOI (Automated Optical Inspection) 

systems. Being an open-source model, YOLOv8 provides 

flexibility and can serve as a valuable secondary inspection 

tool. However, inspected images can still undergo further 

analysis offline to enhance defect detection and quality 

control. 

 

More importantly, collaboration with process engineering is 

crucial to know better the rejection criteria of all defects for 

each product to provide an even more accurate result. 
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