
33rd ASEMEP National Technical Symposium

 1

A Comparative Study of Rule-based Image Processing Techniques and Deep Learning

Algorithms in Automated Optical Inspection

Michael DC. Trinidad

Diego Jose L. Cabalza

Ian Carlo F. Ecal

Carmona Automation and Mechatronics, Test Operations

onsemi, Golden Mile Business Park, SEZ Governor’s Drive, Maduya, Carmona, Cavite, Philippines

Michael.Trinidad@onsemi.com, DiegoJose.Cabalza@onsemi.com, Ian.Ecal@onsemi.com

ABSTRACT

In the competitive field of semiconductor manufacturing,

ensuring the timely delivery of high-quality products to

customers is paramount. Leveraging recent advancements in

imaging technology and artificial intelligence, Automated

Optical Inspection (AOI) systems are now increasingly

adopted to replace slow, manual inspection methods.

A typical AOI setup can cost around $20,000 USD which

includes computers, cameras, lighting systems and computer

vision software applications. In pursuit of cost-effectiveness,

onsemi Carmona made a significant investment in the

development of an in-house computer vision system. This

system plays a vital role in transforming traditional manual

inspection into a sophisticated automated optical inspection

process by deploying both rule-based image processing

techniques and deep learning models.

This paper delves into the early challenges and recent

improvements in developing computer vision systems for

defect detection. It also highlights the drawbacks of

conventional image processing techniques compared to the

deep learning approach.

The paper used mold package defect detection as a case study

demonstrating the superiority of deep learning models.

Notably, YOLOv8 (You Only Look Once version 8) emerged

as a powerful solution with 99.28% accuracy. This

outperformed conventional rule-based image processing

techniques that were used initially.

1.0 INTRODUCTION

The mold assembly process has long been associated with

package defects, which can arise from various factors such as

human-induced causes and machine issues. Common defects

include voids, package chipping, scratches, foreign material,

and cracks. In this context, mold manual vision inspection

becomes an ideal starting point for automation.

The in-house computer vision system, developed by the team,

utilizes an Ultra-HD 4K camera integrated with locally

fabricated handling equipment. However, its performance on

mold samples falls short of the company’s standards. Figure

1 shows an MSA trial result achieving only 86.3% accuracy

with false alarm rate of 11.74% and miss rate of 36.36%.

These suboptimal performance metrics pose risks both to

customers in terms of quality and to the manufacturer due to

potential yield loss. Maintaining high accuracy in computer

vision systems is crucial, especially when dealing with

quality control and manufacturing processes. Balancing false

alarms and misses is a delicate task and improvements in the

software can lead to better outcomes for both customers and

the company.

Figure 1. Measurement Systems Analysis (MSA) Reject Map vs Rule-based
Output Map. MSA Reject Map is at the top while the Rule-Based Output

Map is at the bottom. The performance metrics of the Rule-based method,

employing set rules with image processing techniques, had an accuracy of
86.3%, a miss rate of 36.36%, and a false alarm rate of 11.74%.

1.1 Rule-based Image Processing Techniques and

Limitations

Rule-based image processing techniques are among the

earliest methods used in computer vision systems. This

traditional approach aims to classify objects within an image

for various purposes. Essentially, developers implement rules

and algorithms to process images. These rules often involve

logical conditions expressed through code. The acceptance or

rejection of specific features in an image is typically based on

measures such as thresholds, object counts, standard

deviation and area in terms of pixels.

1.1.1 Thresholding

In the initial stages of recipe creation, colored images

captured by the camera are converted into grayscale. For

binary, pixel intensities below the threshold value become 0

33rd ASEMEP National Technical Symposium

 2

(black), and those above it become 255 (white). The opposite

is true for binary inverse thresholding. Figure 2 shows the

binary and binary thresholding processes with a defined

threshold value.

Figure 2. Binary and Binary Inverse Thresholding. The first image displays

a grayscale image with varying pixel intensities, which can be converted into
numeric values. The second image represents binary thresholding. In this

process, intensity values below a specified threshold become black, while

those above it become white. The third image, on the right, is the opposite of

binary thresholding, referred to as binary inverse thresholding.

Figure 3 shows an example of using binary thresholding to

isolate the void defect from an image as part of the recipe

creation process. The light-colored void within the image

becomes a separate object, while the remaining portion of the

package serves as the background.

Figure 3. Recipe Test Creation for Void Detection using a sample image.

Voids refer to the presence of porous-like empty cavities on the molded

package surface. These are visually manifested as pinholes, pits, spherical
holes, or crater-like features.

Figure 4 shows the void detection test result of a sample unit.

While the original image is converted to binary thresholding,

the isolated void defect is not easily seen compared to the test

recipe. This causes its pixel values to fall beneath the recipe’s

threshold limit. Consequently, the defect is undetected due to

the recipe’s inability to accurately segment the image.

Figure 4. Void Defect Detection Test Result in Sample Unit. A void defect
seen as a pit hole appears to have the same color as the rest of the captured

unit, showing a missed detection despite correct defect classification.

To address the issue of defects having varying threshold

values for segmentation purposes, the recipe is enhanced with

additional tests to accommodate different scenarios or defect

variations. Typically, variations in color necessitate multiple

tests, which in turn add extra cycle time to the inspection

process.

1.1.2 Fixed Region of Interest versus Variable Indexing

One of first requirements in building an automated optical

inspection recipe is to set the ROI (Region of Interest). ROI

defines the borders on which the operations of the image

processing application take place. Figure 5 shows a test recipe

with set ROI for detection of voids within the area. Areas

outside of the ROI are not considered during the analysis of

the image.

Figure 5. Region of Interest (ROI) for a Void Defect Detection Recipe. The
figure shows a recipe for detecting voids using a rectangular border, serving

as the Region of Interest (ROI). The rectangular box area is where the

analysis is expected to occur.

Figure 6 shows a test result of a sample unit with the

positional shift of the ROI. This shift is attributed to minute

variations in mechanical shifting of the handler or the lead

frame itself, even those as small as a few microns. This can

result in a failure in detection since void falls outside the ROI.

Figure 6. Region of Interest (ROI) for a Void Defect Detection Recipe. The

figure illustrates a positional shift of the ROI. The void, situated in the upper

left section, falls outside the ROI, leading to a failure in detection.

1.1.2 Filtering

In creating recipes for automated optical inspection, it is

important to consider the varied sizes of defects. Some

defects falling under the same category can come in varied

sizes, color, and shapes. Voids for example can look like a

large crater and some can look like a small pin hole. It is

advisable when using a rule-based image processing

technique to create multiple inspection tests to account for

these variations. One technique that can detect the smallest

33rd ASEMEP National Technical Symposium

 3

defect size is filter coverage. Figure 7 shows the application

of filter coverage, reducing noise by filtering out supposed

defects too small to meet the actual rejection criteria.

Figure 7. Filter coverage for a Void Defect Detection Test Recipe. The figure
shows a small void defect, where a specified filter coverage limit value

enables the recognition of a clump of black pixels as voids within this recipe.

Figure 8 shows a test result of a sample unit with the

application of filter coverage. Numerous clumps of dark

pixels are displayed which fall within the filter coverage limit

value. This results in these clumps not filtered as noise. This

circumstance can trigger a false alarm, suggesting the

existence of any void where there is none.

Figure 8. Filter coverage for a Void Defect Detection Test Recipe. The figure

displays a new image featuring numerous clumps of dark pixels. This
circumstance can trigger a false alarm, suggesting the existence of any void

where there is none.

2.0 REVIEW OF RELATED WORK OR

LITERATURE

Saberironaghi et al. [1] reviewed the use of deep learning

techniques, such as R-CNN, ResNet50, and ShuffleNetV2

convolutional neural networks, for defect detection on

industrial products. Examples of defect detection include

corrosion detection and metal defect detection. It also

acknowledges the common challenges in defect detection

such as unbalanced sample identification, limited sample size

of defects, and real-time processing.

Dehaerne et al. [2] optimized the use of YOLOv7 for

Semiconductor Defect Detection. A dataset of SEM

(scanning electron microscopy) images was used for model

training as they produce high-resolution images for

inspecting defects at the nanometer scale. Defect instances of

the image dataset include line collapse, gap, p-gap, bridge, or

microbridge defects. The base YOLOv7 model achieved a

mean average precision (mAP) of 79%. This was then

improved to 86.8% by adjusting certain hyperparameters

during model training.

Xiao et al. [3] proposed a Deep Learning-based defect

detection algorithm for Printed Circuit Boards (PCBs) based

on CDI-YOLO. The network structure of CDI-YOLO is seen

as an improvement of YOLOv7, a previous version of

YOLOv8. The results of their methodology produced a mean

average precision (mAP) of 98.7% on a sample PCB defect

dataset with a detection speed of 128 frames per second.

Trinidad et al. [4] conducted a previous case study where a

Deep Learning model was trained by another Convolutional

Neural Network called ResNet50. The model is used to

identify Personal Protective Equipment (PPE) worn by the

operator before accessing bake ovens. The case study

achieved an impressive accuracy of 99.6% and successfully

differentiated between proper and improper wearing of PPE.

3.0 METHODOLOGY

3.1 Data Collection

Deep learning for object detection requires large quantities of

data for the model to perform well. Figure 9 shows the in-

house developed handling equipment, with two bar lights

attached as side lightings to illuminate each unit surface

during image capturing. Side lightings are effective in

highlighting surface contours and particularly effective in

detecting defects such as cracks, scratches, and pits. With the

equipment, the team initially collected images from 15 strips

of TSSOP devices containing 256 units for each strip. The

handler is equipped with an Ultra HD 4K camera that can

capture an image with an original size of 1920 X 1080 pixels.

An auto-crop feature was employed to reduce the image size

to 958 X 1077 pixels, effectively removing regions that are

not included in the inspection process.

Figure 9. AOI Machine Camera Setup with Integrated Lighting for Image

Capture. The figure demonstrates the application of an Ultra HD 4K camera,
equipped with two bar lights for side package illumination. It also provides

a preview of the image captured from a single unit under each lighting

condition.

33rd ASEMEP National Technical Symposium

 4

3.2 Annotation

In object detection tasks, annotating images with descriptive

labels is crucial for training models. LabelMe, an open-source

graphical annotation tool, is widely used for this purpose.

Defects within the images can be annotated using various

forms such as lines, points, and rectangles. These defects are

then labeled according to their respective categories. Figure

10 shows an example of annotating a void defect from an

image.

Figure 10. Sample Annotation of Defects in Image. The figure shows an

annotation task carried out on a unit with a void defect using LabelMe.

3.3 Conversion from JSON to YOLO

After using LabelMe for object detection annotation task, the

initial file format of the labels is in JSON (JavaScript Object

Notation). To train a YOLOv8 model, the JSON file needs to

be converted to a text format. Figure 11 shows a sample label

file of a converted JSON file. This conversion can be

achieved by running a “labelmetoYolo” script.

Figure 11. Sample Label File for an Image in JSON Format. The figure

presents a sample label file of an image, structured in JSON format. The

file’s contents show the rejects identified within the image.

3.4 Model Training

YOLOv8, as it is called on the Ultralytics website, represents

the latest iteration of the renowned real-time object detection

and image segmentation model. Leveraging state-of-the-art

advancements in deep learning and computer vision,

YOLOv8 is designed for high-performance tasks. Figure 12

shows an in-house application for YOLOv8 also developed

to streamline model training tasks. Initially, the data is

divided into two sets: training and validation. To simplify the

process, the team focused on binary classification,

specifically identifying units as either ‘good’ or having ‘void

defects.’ The data split serves the purpose of training the

model and evaluating its performance. After training for 64

epochs, the model retains the best weights for optimal results.

Figure 12. YOLOv8 Model Training using a Custom UI Application. The

figure shows the model training process carried out in YOLOv8 using a
custom-built user interface specifically designed for training deep learning

models.

When model training is finished, its output will include a

generated best model along with the statistical results of the

process. Figure 13 shows a selection of images also displayed

in the output trained with YOLOv8.

Figure 13. YOLOv8 Model Training with an Image Dataset. The figure

displays a selection of images that have been trained using the YOLOv8

model.

33rd ASEMEP National Technical Symposium

 5

4.0 RESULTS AND DISCUSSION

4.1 Accuracy of Model Training

The overall loss components in YOLOv8 are the box_loss

(Box Loss), cls_loss (Classification Loss) and dfl_loss (Dual

Focal Loss). Figure 14 shows these three loss components in

a downward trend. Box loss is the measured error between

the bounding box and the ground truth bounding box

coordinates. Classification Loss is the classification accuracy

where the object class is correctly predicted. Lastly, the Dual

Focal Loss addresses the problem of class imbalance. It

adjusts the loss function to give more importance to less

frequent classes.

Figure 14. Loss Metrics Over Training Epochs for Both Training and

Validation Sets. The figure shows the progression of box_loss, cls_loss, and

dfl_loss for both the training and validation sets over increasing number of
epochs. A clear downward trend is observed, indicating that the model’s

accuracy is improving during the training process.

The optimal model is chosen based on the highest mAP

(Mean Average Precision) score. Figure 15 shows the mAP

score reflecting how effectively the model localizes and

classifies objects.

Figure 15. Peak Model Performance Accuracy Score. The figure shows the

peak mAP value of 0.74 achieved at epoch 48. This peak value signifies the
model’s optimal performance effectiveness in terms of both localization and

classification accuracy.

4.2 Prediction Result

To assess the performance of rule-based image processing

versus YOLOv8, the team collected a sample of 276 images.

These images contained randomly selected units, both ‘good’

and those with ‘void defects.’ Figure 16 shows the result

comparison of Rule-based image processing and YOLOv8.

Rule-based image processing scored a moderate 77.17% with

14.22% miss rate and around 60.78% in false alarm. It

predicted all the units with defects. However, most of it was

not actually captured but pointed to a different part of the

package. In contrast, YOLOv8 exhibited near zero false

alarms and zero miss rate. It correctly predicted the defects

and its location in the package.

Method Accuracy Miss False Alarm

Rule-based Image Processing 77.17% 14.22% 60.78%

YOLOv8 99.28% 0% 3.9%

Figure 16. Rule-based method vs. YOLOv8 results. The table shows that the
accuracy of YOLOv8 greatly surpassed that of rule-based image processing

performance.

Figure 17 shows sample images of units classified as rejects

using Rule-based image processing. However, many of these

detections are inaccurately positioned, not aligning with the

actual locations of the defects.

Figure 17. Sample images of Units classified as Voids with Low Positional

Accuracy using Rule-Based image processing. The figure shows that the

rule-based method classified many units as rejects but with inaccurate

positioning.

33rd ASEMEP National Technical Symposium

 6

Figure 18 shows sample images of units misclassified as

misses using Rule-based image processing. The void defects

seen in the units were not captured by the recipe in the rule-

based method, contributing to the miss rate.

Figure 18. Sample images of Misclassified Units using Rule-Based method.

The figure shows examples of misclassified units that exhibit actual void
defects but were not captured using the rule-based image processing method

(miss-rate).

Figure 19 shows sample images of units also misclassified as

false alarms using Rule-based image processing. The units

were declared as having void defects despite not exhibiting

such defects.

Figure 19. Sample images of Misclassified Units as False Alarm using Rule-

Based method. The figure shows examples of misclassified units that were
declared as failures using rule-based image processing, despite not exhibiting

any actual void defect (false-alarms).

Figure 20 shows sample images of units correctly classified

using a YOLOv8 model. The defects were successfully

captured with their precise locations in each unit.

Figure 20. Sample images of accurately classified Units using YOLOv8. The

figure demonstrates that the YOLOv8 model accurately classified void
defects in their correct locations. (high accuracy).

Figure 21 shows the two misclassified units as false alarms

using a YOLOv8 model. A highly minimal false alarm rate is

still provided by YOLOv8, ensuring a higher accuracy than

the rule-based method.

Figure 21. Sample images of Misclassified Units as False Alarm using

YOLOv8. The figure shows only 2 misclassified units out of 276 without an

actual void defect using YOLOv8 (minimal false-alarm rate).

Figure 22 shows more images gathered with various defects

to validate whether YOLOv8 can effectively detect more

mold defects. These images were annotated and trained using

LabelMe and YOLOv8 respectively. Subsequently, a

separate set of test images was analyzed using the trained

YOLOv8 model. The results were promising, with the

custom-built YOLOv8 model precisely identifying the reject

category corresponding to the observed defects. The defects

include incomplete fill, scratches, voids, chipping, ejector pin

damage and contamination.

Figure 22. More images of accurately classified Units using YOLOv8. The
shows a variety of defects captured by YOLOv8. This was achieved by

training on annotated images with multiple defect categories. The

effectiveness of YOLOv8 in identifying multiple defect categories is clearly
demonstrated in the figure.

5.0 CONCLUSION

As discussed in Section 1.0, an in-house computer vision

system was developed to transform manual inspection into an

automated optical inspection process as an initiative towards

cost-effectiveness. At first, the system utilized rule-based

image processing techniques for mold defect detection.

However, it only achieved an accuracy of 86.3% with a false

alarm rate of 11.74% and a miss rate of 36.36% during

33rd ASEMEP National Technical Symposium

 7

Measurement Systems Analysis (MSA) Testing. These

results fall below company standards.

Section 3 discussed that by employing YOLOv8, it can

deliver better results when provided with a sufficient dataset

for model training. It also managed to more accurately locate

each defect per unit during testing and provide more

flexibility in object detection. Using the same image dataset

to test the accuracy of the two methods, YOLOv8 provided a

99.28% accuracy with near-zero false alarm rate and zero

miss rate. Meanwhile, the rule-based method only provided a

77.17% accuracy with a false alarm rate of 60.78% and a miss

rate of 14.22%.

In conclusion, YOLOv8 deep learning models proved to be a

superior alternative to rule-based image processing.

6.0 RECOMMENDATIONS

While deep-learning-based methodologies can be used for

image classification, it is also resource-intensive. This will

require high-performance hardware like CPUs/GPUs for

training deep learning models. Large quantities of data such

as images are also required for a more optimal model

performance.

In manufacturing settings, where manual inspection

processes remain prevalent, YOLOv8 offers a cost-effective

alternative to traditional AOI (Automated Optical Inspection)

systems. Being an open-source model, YOLOv8 provides

flexibility and can serve as a valuable secondary inspection

tool. However, inspected images can still undergo further

analysis offline to enhance defect detection and quality

control.

More importantly, collaboration with process engineering is

crucial to know better the rejection criteria of all defects for

each product to provide an even more accurate result.

7.0 ACKNOWLEDGMENT

The team extends its gratitude to Vic Delos Reyes for the

unwavering support in our ongoing efforts to enhance the in-

house developed computer vision project. Additionally, we

express our appreciation to Peter Awayan and Ana Eugenio

for providing support in writing this paper. Remarkably, we

have achieved three consecutive years of publishing papers

for onsemi.

8.0 REFERENCES

1. Saberironaghi A, Ren J, El-Gindy M. Defect Detection

Methods for Industrial Products Using Deep Learning

Techniques: A Review. Algorithms. 2023; 16(2):95.

https://doi.org/10.3390/a16020095

2. Dehaerne, E., Dey, B., Halder, S. & De Gendt, S. Optimizing

YOLOv7 for Semiconductor Defect Detection. (2023).

10.48550/arXiv.2302.09565.

3. Xiao, G., Hou, S. & Zhou, H. PCB defect detection algorithm

based on CDI-YOLO. Sci Rep 14, 7351 (2024).

https://doi.org/10.1038/s41598-024-57491-3

4. Trinidad, M., Cabalza, D., & Fajardo, R. One-shot PPE

Detection for Bake Ovens using ResNet50 Convolutional

Neural Network. 2023

9.0 ABOUT THE AUTHORS

Michael DC. Trinidad, an Electronics and

Engineering graduate from the

Technological University of the Philippines -

Taguig, is a seasoned professional in the

Semiconductor Manufacturing Industry. Since joining

onsemi in 2006, he has held roles such as Mixed Signal

Equipment Engineer, contributing to his expertise in

semiconductor testing. He played a key role in a significant

big data analytics project in 2018 and is currently deeply

involved in vision systems and machine learning

implementation.

Diego Jose L. Cabalza completed his

Bachelor of Science degree in Electronics

and Communications Engineering from the

University of the Philippines – Diliman in

2022. He currently serves as a

manufacturing engineer at onsemi Carmona, where he

focuses on projects related to Data Analytics and Machine

Learning.

Ian Carlo F. Ecal is a skilled

Manufacturing Equipment Engineer with a

strong background in Mechanical Design

and Tool and Die Engineering Technology.

He holds a license as a Registered

Mechanical Engineer and completed his education at the

Technological University of the Philippines - Manila from

2012 to 2019. His expertise lies in designing and optimizing

mechanical systems, ensuring efficient and reliable

manufacturing processes.

